178,795 research outputs found
Certainty and Uncertainty in Quantum Information Processing
This survey, aimed at information processing researchers, highlights
intriguing but lesser known results, corrects misconceptions, and suggests
research areas. Themes include: certainty in quantum algorithms; the "fewer
worlds" theory of quantum mechanics; quantum learning; probability theory
versus quantum mechanics.Comment: Invited paper accompanying invited talk to AAAI Spring Symposium
2007. Comments, corrections, and suggestions would be most welcom
Quantum Robot: Structure, Algorithms and Applications
A kind of brand-new robot, quantum robot, is proposed through fusing quantum
theory with robot technology. Quantum robot is essentially a complex quantum
system and it is generally composed of three fundamental parts: MQCU (multi
quantum computing units), quantum controller/actuator, and information
acquisition units. Corresponding to the system structure, several learning
control algorithms including quantum searching algorithm and quantum
reinforcement learning are presented for quantum robot. The theoretic results
show that quantum robot can reduce the complexity of O(N^2) in traditional
robot to O(N^(3/2)) using quantum searching algorithm, and the simulation
results demonstrate that quantum robot is also superior to traditional robot in
efficient learning by novel quantum reinforcement learning algorithm.
Considering the advantages of quantum robot, its some potential important
applications are also analyzed and prospected.Comment: 19 pages, 4 figures, 2 table
Learning with Errors is easy with quantum samples
Learning with Errors is one of the fundamental problems in computational
learning theory and has in the last years become the cornerstone of
post-quantum cryptography. In this work, we study the quantum sample complexity
of Learning with Errors and show that there exists an efficient quantum
learning algorithm (with polynomial sample and time complexity) for the
Learning with Errors problem where the error distribution is the one used in
cryptography. While our quantum learning algorithm does not break the LWE-based
encryption schemes proposed in the cryptography literature, it does have some
interesting implications for cryptography: first, when building an LWE-based
scheme, one needs to be careful about the access to the public-key generation
algorithm that is given to the adversary; second, our algorithm shows a
possible way for attacking LWE-based encryption by using classical samples to
approximate the quantum sample state, since then using our quantum learning
algorithm would solve LWE
Quantum control theory and applications: A survey
This paper presents a survey on quantum control theory and applications from
a control systems perspective. Some of the basic concepts and main developments
(including open-loop control and closed-loop control) in quantum control theory
are reviewed. In the area of open-loop quantum control, the paper surveys the
notion of controllability for quantum systems and presents several control
design strategies including optimal control, Lyapunov-based methodologies,
variable structure control and quantum incoherent control. In the area of
closed-loop quantum control, the paper reviews closed-loop learning control and
several important issues related to quantum feedback control including quantum
filtering, feedback stabilization, LQG control and robust quantum control.Comment: 38 pages, invited survey paper from a control systems perspective,
some references are added, published versio
A Survey of Quantum Learning Theory
This paper surveys quantum learning theory: the theoretical aspects of
machine learning using quantum computers. We describe the main results known
for three models of learning: exact learning from membership queries, and
Probably Approximately Correct (PAC) and agnostic learning from classical or
quantum examples.Comment: 26 pages LaTeX. v2: many small changes to improve the presentation.
This version will appear as Complexity Theory Column in SIGACT News in June
2017. v3: fixed a small ambiguity in the definition of gamma(C) and updated a
referenc
Quantum Associative Memory
This paper combines quantum computation with classical neural network theory
to produce a quantum computational learning algorithm. Quantum computation uses
microscopic quantum level effects to perform computational tasks and has
produced results that in some cases are exponentially faster than their
classical counterparts. The unique characteristics of quantum theory may also
be used to create a quantum associative memory with a capacity exponential in
the number of neurons. This paper combines two quantum computational algorithms
to produce such a quantum associative memory. The result is an exponential
increase in the capacity of the memory when compared to traditional associative
memories such as the Hopfield network. The paper covers necessary high-level
quantum mechanical and quantum computational ideas and introduces a quantum
associative memory. Theoretical analysis proves the utility of the memory, and
it is noted that a small version should be physically realizable in the near
future
- …
