247,240 research outputs found

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Quantum Robot: Structure, Algorithms and Applications

    Full text link
    A kind of brand-new robot, quantum robot, is proposed through fusing quantum theory with robot technology. Quantum robot is essentially a complex quantum system and it is generally composed of three fundamental parts: MQCU (multi quantum computing units), quantum controller/actuator, and information acquisition units. Corresponding to the system structure, several learning control algorithms including quantum searching algorithm and quantum reinforcement learning are presented for quantum robot. The theoretic results show that quantum robot can reduce the complexity of O(N^2) in traditional robot to O(N^(3/2)) using quantum searching algorithm, and the simulation results demonstrate that quantum robot is also superior to traditional robot in efficient learning by novel quantum reinforcement learning algorithm. Considering the advantages of quantum robot, its some potential important applications are also analyzed and prospected.Comment: 19 pages, 4 figures, 2 table

    Basic protocols in quantum reinforcement learning with superconducting circuits

    Get PDF
    Superconducting circuit technologies have recently achieved quantum protocols involving closed feedback loops. Quantum artificial intelligence and quantum machine learning are emerging fields inside quantum technologies which may enable quantum devices to acquire information from the outer world and improve themselves via a learning process. Here we propose the implementation of basic protocols in quantum reinforcement learning, with superconducting circuits employing feedback-loop control. We introduce diverse scenarios for proof-of-principle experiments with state-of-the-art superconducting circuit technologies and analyze their feasibility in presence of imperfections. The field of quantum artificial intelligence implemented with superconducting circuits paves the way for enhanced quantum control and quantum computation protocols.Comment: Published versio

    Learning with Errors is easy with quantum samples

    Full text link
    Learning with Errors is one of the fundamental problems in computational learning theory and has in the last years become the cornerstone of post-quantum cryptography. In this work, we study the quantum sample complexity of Learning with Errors and show that there exists an efficient quantum learning algorithm (with polynomial sample and time complexity) for the Learning with Errors problem where the error distribution is the one used in cryptography. While our quantum learning algorithm does not break the LWE-based encryption schemes proposed in the cryptography literature, it does have some interesting implications for cryptography: first, when building an LWE-based scheme, one needs to be careful about the access to the public-key generation algorithm that is given to the adversary; second, our algorithm shows a possible way for attacking LWE-based encryption by using classical samples to approximate the quantum sample state, since then using our quantum learning algorithm would solve LWE

    Quantum ensembles of quantum classifiers

    Full text link
    Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which -- similar to Bayesian learning -- the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.Comment: 19 pages, 9 figure

    Strategy for quantum algorithm design assisted by machine learning

    Full text link
    We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum-classical hybrid simulator, where a "quantum student" is being taught by a "classical teacher." In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem assisted by classical main-feedback system. Our method is applicable to design quantum oracle-based algorithm. As a case study, we chose an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using Monte-Carlo simulations that our simulator can faithfully learn quantum algorithm to solve the problem for given oracle. Remarkably, learning time is proportional to the square root of the total number of parameters instead of the exponential dependance found in the classical machine learning based method.Comment: published versio
    corecore