247,240 research outputs found
Quantum machine learning: a classical perspective
Recently, increased computational power and data availability, as well as
algorithmic advances, have led machine learning techniques to impressive
results in regression, classification, data-generation and reinforcement
learning tasks. Despite these successes, the proximity to the physical limits
of chip fabrication alongside the increasing size of datasets are motivating a
growing number of researchers to explore the possibility of harnessing the
power of quantum computation to speed-up classical machine learning algorithms.
Here we review the literature in quantum machine learning and discuss
perspectives for a mixed readership of classical machine learning and quantum
computation experts. Particular emphasis will be placed on clarifying the
limitations of quantum algorithms, how they compare with their best classical
counterparts and why quantum resources are expected to provide advantages for
learning problems. Learning in the presence of noise and certain
computationally hard problems in machine learning are identified as promising
directions for the field. Practical questions, like how to upload classical
data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde
Quantum Robot: Structure, Algorithms and Applications
A kind of brand-new robot, quantum robot, is proposed through fusing quantum
theory with robot technology. Quantum robot is essentially a complex quantum
system and it is generally composed of three fundamental parts: MQCU (multi
quantum computing units), quantum controller/actuator, and information
acquisition units. Corresponding to the system structure, several learning
control algorithms including quantum searching algorithm and quantum
reinforcement learning are presented for quantum robot. The theoretic results
show that quantum robot can reduce the complexity of O(N^2) in traditional
robot to O(N^(3/2)) using quantum searching algorithm, and the simulation
results demonstrate that quantum robot is also superior to traditional robot in
efficient learning by novel quantum reinforcement learning algorithm.
Considering the advantages of quantum robot, its some potential important
applications are also analyzed and prospected.Comment: 19 pages, 4 figures, 2 table
Basic protocols in quantum reinforcement learning with superconducting circuits
Superconducting circuit technologies have recently achieved quantum protocols
involving closed feedback loops. Quantum artificial intelligence and quantum
machine learning are emerging fields inside quantum technologies which may
enable quantum devices to acquire information from the outer world and improve
themselves via a learning process. Here we propose the implementation of basic
protocols in quantum reinforcement learning, with superconducting circuits
employing feedback-loop control. We introduce diverse scenarios for
proof-of-principle experiments with state-of-the-art superconducting circuit
technologies and analyze their feasibility in presence of imperfections. The
field of quantum artificial intelligence implemented with superconducting
circuits paves the way for enhanced quantum control and quantum computation
protocols.Comment: Published versio
Learning with Errors is easy with quantum samples
Learning with Errors is one of the fundamental problems in computational
learning theory and has in the last years become the cornerstone of
post-quantum cryptography. In this work, we study the quantum sample complexity
of Learning with Errors and show that there exists an efficient quantum
learning algorithm (with polynomial sample and time complexity) for the
Learning with Errors problem where the error distribution is the one used in
cryptography. While our quantum learning algorithm does not break the LWE-based
encryption schemes proposed in the cryptography literature, it does have some
interesting implications for cryptography: first, when building an LWE-based
scheme, one needs to be careful about the access to the public-key generation
algorithm that is given to the adversary; second, our algorithm shows a
possible way for attacking LWE-based encryption by using classical samples to
approximate the quantum sample state, since then using our quantum learning
algorithm would solve LWE
Quantum ensembles of quantum classifiers
Quantum machine learning witnesses an increasing amount of quantum algorithms
for data-driven decision making, a problem with potential applications ranging
from automated image recognition to medical diagnosis. Many of those algorithms
are implementations of quantum classifiers, or models for the classification of
data inputs with a quantum computer. Following the success of collective
decision making with ensembles in classical machine learning, this paper
introduces the concept of quantum ensembles of quantum classifiers. Creating
the ensemble corresponds to a state preparation routine, after which the
quantum classifiers are evaluated in parallel and their combined decision is
accessed by a single-qubit measurement. This framework naturally allows for
exponentially large ensembles in which -- similar to Bayesian learning -- the
individual classifiers do not have to be trained. As an example, we analyse an
exponentially large quantum ensemble in which each classifier is weighed
according to its performance in classifying the training data, leading to new
results for quantum as well as classical machine learning.Comment: 19 pages, 9 figure
Strategy for quantum algorithm design assisted by machine learning
We propose a method for quantum algorithm design assisted by machine
learning. The method uses a quantum-classical hybrid simulator, where a
"quantum student" is being taught by a "classical teacher." In other words, in
our method, the learning system is supposed to evolve into a quantum algorithm
for a given problem assisted by classical main-feedback system. Our method is
applicable to design quantum oracle-based algorithm. As a case study, we chose
an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using
Monte-Carlo simulations that our simulator can faithfully learn quantum
algorithm to solve the problem for given oracle. Remarkably, learning time is
proportional to the square root of the total number of parameters instead of
the exponential dependance found in the classical machine learning based
method.Comment: published versio
- …
