452,190 research outputs found

    Quantum geometry and quantum algorithms

    Get PDF
    Motivated by algorithmic problems arising in quantum field theories whose dynamical variables are geometric in nature, we provide a quantum algorithm that efficiently approximates the colored Jones polynomial. The construction is based on the complete solution of Chern-Simons topological quantum field theory and its connection to Wess-Zumino-Witten conformal field theory. The colored Jones polynomial is expressed as the expectation value of the evolution of the q-deformed spin-network quantum automaton. A quantum circuit is constructed capable of simulating the automaton and hence of computing such expectation value. The latter is efficiently approximated using a standard sampling procedure in quantum computation.Comment: Submitted to J. Phys. A: Math-Gen, for the special issue ``The Quantum Universe'' in honor of G. C. Ghirard

    Geometry and structure of quantum phase space

    Full text link
    The application of geometry to physics has provided us with new insightful information about many physical theories such as classical mechanics, general relativity, and quantum geometry (quantum gravity). The geometry also plays an important role in foundations of quantum mechanics and quantum information. In this work we discuss a geometric framework for mixed quantum states represented by density matrices, where the quantum phase space of density matrices is equipped with a symplectic structure, an almost complex structure, and a compatible Riemannian metric. This compatible triple allow us to investigate arbitrary quantum systems. We will also discuss some applications of the geometric framework.Comment: 7 pages, talk given at the conference on Quantum Theory: from Problems to Advances - QTP

    The status of Quantum Geometry in the dynamical sector of Loop Quantum Cosmology

    Full text link
    This letter is motivated by the recent papers by Dittrich and Thiemann and, respectively, by Rovelli discussing the status of Quantum Geometry in the dynamical sector of Loop Quantum Gravity. Since the papers consider model examples, we also study the issue in the case of an example, namely on the Loop Quantum Cosmology model of space-isotropic universe. We derive the Rovelli-Thiemann-Ditrich partial observables corresponding to the quantum geometry operators of LQC in both Hilbert spaces: the kinematical one and, respectively, the physical Hilbert space of solutions to the quantum constraints. We find, that Quantum Geometry can be used to characterize the physical solutions, and the operators of quantum geometry preserve many of their kinematical properties.Comment: Latex, 12 page

    Towards the fractional quantum Hall effect: a noncommutative geometry perspective

    Get PDF
    In this paper we give a survey of some models of the integer and fractional quantum Hall effect based on noncommutative geometry. We begin by recalling some classical geometry of electrons in solids and the passage to noncommutative geometry produced by the presence of a magnetic field. We recall how one can obtain this way a single electron model of the integer quantum Hall effect. While in the case of the integer quantum Hall effect the underlying geometry is Euclidean, we then discuss a model of the fractional quantum Hall effect, which is based on hyperbolic geometry simulating the multi-electron interactions. We derive the fractional values of the Hall conductance as integer multiples of orbifold Euler characteristics. We compare the results with experimental data.Comment: 27 pages, LaTeX, 9 eps figures, v2: minor change

    Diffusion in quantum geometry

    Full text link
    The change of the effective dimension of spacetime with the probed scale is a universal phenomenon shared by independent models of quantum gravity. Using tools of probability theory and multifractal geometry, we show how dimensional flow is controlled by a multiscale fractional diffusion equation, and physically interpreted as a composite stochastic process. The simplest example is a fractional telegraph process, describing quantum spacetimes with a spectral dimension equal to 2 in the ultraviolet and monotonically rising to 4 towards the infrared. The general profile of the spectral dimension of the recently introduced multifractional spaces is constructed for the first time.Comment: 5 pages, 1 figure. v2: title slightly changed, discussion improve
    corecore