634 research outputs found

    A 160-Gb/s OTDM demultiplexer based on parametric wavelength exchange

    Get PDF
    Parametric wavelength exchange (PWE) has been demonstrated as a versatile device in providing different functionalities. In this paper, we will concentrate, numerically and experimentally, on one of these functionalities, namely, all-optical time demultiplexing of 160-Gb/s return-to-zero (RZ) signals based on a pulsed-pump PWE in a 400 m highly nonlinear dispersion-shifted fiber. Experimental results show power penalties < 2.7 dB at bit-error rate of 10-9 for all demultiplexed 10-Gb/s RZ signals. We also derive theoretical expressions for the conversion/residual efficiencies and investigate the impact of pump pulse width and phase mismatch on these efficiencies. Furthermore, the impacts of pulsed-pump wavelength and power level on the characteristics of the switching window are investigated numerically. As a result, the demultiplexer can be easily upgraded to an add-drop multiplexer because of the complete exchange nature of PWE, which is justified by the surviving channels' waveform performance. © 2009 IEEE.published_or_final_versio

    A 160-Gb/s OTDM demultiplexer based on parametric wavelength exchange

    Get PDF
    Parametric wavelength exchange (PWE) has been demonstrated as a versatile device in providing different functionalities. In this paper, we will concentrate, numerically and experimentally, on one of these functionalities, namely, all-optical time demultiplexing of 160-Gb/s return-to-zero (RZ) signals based on a pulsed-pump PWE in a 400 m highly nonlinear dispersion-shifted fiber. Experimental results show power penalties < 2.7 dB at bit-error rate of 10-9 for all demultiplexed 10-Gb/s RZ signals. We also derive theoretical expressions for the conversion/residual efficiencies and investigate the impact of pump pulse width and phase mismatch on these efficiencies. Furthermore, the impacts of pulsed-pump wavelength and power level on the characteristics of the switching window are investigated numerically. As a result, the demultiplexer can be easily upgraded to an add-drop multiplexer because of the complete exchange nature of PWE, which is justified by the surviving channels' waveform performance. © 2009 IEEE.published_or_final_versio

    Multi-dimensional entanglement generation with multi-core optical fibers

    Get PDF
    Trends in photonic quantum information follow closely the technical progress in classical optics and telecommunications. In this regard, advances in multiplexing optical communications channels have also been pursued for the generation of multi-dimensional quantum states (qudits), since their use is advantageous for several quantum information tasks. One current path leading in this direction is through the use of space-division multiplexing multi-core optical fibers, which provides a new platform for efficiently controlling path-encoded qudit states. Here we report on a parametric down-conversion source of entangled qudits that is fully based on (and therefore compatible with) state-of-the-art multi-core fiber technology. The source design uses modern multi-core fiber beam splitters to prepare the pump laser beam as well as measure the generated entangled state, achieving high spectral brightness while providing a stable architecture. In addition, it can be readily used with any core geometry, which is crucial since widespread standards for multi-core fibers in telecommunications have yet to be established. Our source represents an important step towards the compatibility of quantum communications with the next-generation optical networks.Comment: 9 pages, 7 figure

    Coexistence of continuous variable QKD with intense DWDM classical channels

    Full text link
    We demonstrate experimentally the feasibility of continuous variable quantum key distribution (CV-QKD) in dense-wavelength-division multiplexing networks (DWDM), where QKD will typically have to coexist with several co- propagating (forward or backward) C-band classical channels whose launch power is around 0dBm. We have conducted experimental tests of the coexistence of CV-QKD multiplexed with an intense classical channel, for different input powers and different DWDM wavelengths. Over a 25km fiber, a CV-QKD operated over the 1530.12nm channel can tolerate the noise arising from up to 11.5dBm classical channel at 1550.12nm in forward direction (9.7dBm in backward). A positive key rate (0.49kb/s) can be obtained at 75km with classical channel power of respectively -3dBm and -9dBm in forward and backward. Based on these measurements, we have also simulated the excess noise and optimized channel allocation for the integration of CV-QKD in some access networks. We have, for example, shown that CV-QKD could coexist with 5 pairs of channels (with nominal input powers: 2dBm forward and 1dBm backward) over a 25km WDM-PON network. The obtained results demonstrate the outstanding capacity of CV-QKD to coexist with classical signals of realistic intensity in optical networks.Comment: 19 pages, 9 figures. Revised version, to appear in New Journal of Physic

    Qubit entanglement between ring-resonator photon-pair sources on a silicon chip

    Get PDF
    Entanglement—one of the most delicate phenomena in nature—is an essential resource for quantum information applications. Scalable photonic quantum devices must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip that uses resonant-enhanced photon-pair sources, spectral demultiplexers and reconfigurable optics to generate a path-entangled two-qubit state and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing photon-pair sources can be made highly indistinguishable and that their spectral correlations are small. We use on-chip frequency demultiplexers and reconfigurable optics to perform both quantum state tomography and the strict Bell-CHSH test, both of which confirm a high level of on-chip entanglement. This work demonstrates the integration of high-performance components that will be essential for building quantum devices and systems to harness photonic entanglement on the large scale

    Study On All-Optical Signal Processing by Semiconductor Optical Amplifiers for Ultra-High-Speed Optical Fiber Communications

    Get PDF
    戶ćșŠ:新 ; 栱摊ç•Șć·:äč™2307ć· ; ć­ŠäœăźçšźéĄž:ćšćŁ«(ć·„ć­Š) ; 授䞎ćčŽæœˆæ—„:2011/2/25 ; æ—©ć€§ć­Šäœèš˜ç•Șć·:新564

    Visible WDM system for real-time multi-Gb/s bidirectional transmission over 50-m SI-POF

    Get PDF
    We report a 2 Gb/s bidirectional real-time data transmission with bit error rate (BER) < 1 x 10(-10) in a 50 m step-index polymer optical fiber link. The system is able to transmit 5 Gb/s using five channels. The system performance is tested using the most restrictive channels with the shortest and longest wavelengths in a real-time Ethernet link. The implementation takes an advantage of the PAM-16 modulation spectral efficiency and low loss multiplexers and demultiplexers, which provide an enhanced link power budget. The optical power per transmitted bit considering the BER implication for TCP/IP networks throughput is below 5.8 pJ/b. This is due to the low insertion losses <4 dB, in each five-channel multiplexer and demultiplexer.This work was supported in part by the Spanish Ministry of Economy under Grants TEC2012-37983-C03-02 and TEC2015-63826-C3-2-R, and in part by Madrid Region under Grant S2013/MIT-2790

    Inverse design of nano-photonic wavelength demultiplexer with a deep neural network approach

    Full text link
    In this paper, we propose a pre-trained-combined neural network (PTCN) as a comprehensive solution to the inverse design of an integrated photonic circuit. By utilizing both the initially pre-trained inverse and forward model with a joint training process, our PTCN model shows remarkable tolerance to the quantity and quality of the training data. As a proof of concept demonstration, the inverse design of a wavelength demultiplexer is used to verify the effectiveness of the PTCN model. The correlation coefficient of the prediction by the presented PTCN model remains greater than 0.974 even when the size of training data is decreased to 17%. The experimental results show a good agreement with predictions, and demonstrate a wavelength demultiplexer with an ultra-compact footprint, a high transmission efficiency with a transmission loss of -2dB, a low reflection of -10dB, and low crosstalk around -7dB simultaneously
    • 

    corecore