458 research outputs found

    Quantum Goethals-Preparata Codes

    Full text link
    We present a family of non-additive quantum codes based on Goethals and Preparata codes with parameters ((2^m,2^{2^m-5m+1},8)). The dimension of these codes is eight times higher than the dimension of the best known additive quantum codes of equal length and minimum distance.Comment: Submitted to the 2008 IEEE International Symposium on Information Theor

    Quantum Error Correction via Codes over GF(4)

    Get PDF
    The problem of finding quantum error-correcting codes is transformed into the problem of finding additive codes over the field GF(4) which are self-orthogonal with respect to a certain trace inner product. Many new codes and new bounds are presented, as well as a table of upper and lower bounds on such codes of length up to 30 qubits.Comment: Latex, 46 pages. To appear in IEEE Transactions on Information Theory. Replaced Sept. 24, 1996, to correct a number of minor errors. Replaced Sept. 10, 1997. The second section has been completely rewritten, and should hopefully be much clearer. We have also added a new section discussing the developments of the past year. Finally, we again corrected a number of minor error

    From Skew-Cyclic Codes to Asymmetric Quantum Codes

    Full text link
    We introduce an additive but not F4\mathbb{F}_4-linear map SS from F4n\mathbb{F}_4^{n} to F42n\mathbb{F}_4^{2n} and exhibit some of its interesting structural properties. If CC is a linear [n,k,d]4[n,k,d]_4-code, then S(C)S(C) is an additive (2n,22k,2d)4(2n,2^{2k},2d)_4-code. If CC is an additive cyclic code then S(C)S(C) is an additive quasi-cyclic code of index 22. Moreover, if CC is a module θ\theta-cyclic code, a recently introduced type of code which will be explained below, then S(C)S(C) is equivalent to an additive cyclic code if nn is odd and to an additive quasi-cyclic code of index 22 if nn is even. Given any (n,M,d)4(n,M,d)_4-code CC, the code S(C)S(C) is self-orthogonal under the trace Hermitian inner product. Since the mapping SS preserves nestedness, it can be used as a tool in constructing additive asymmetric quantum codes.Comment: 16 pages, 3 tables, submitted to Advances in Mathematics of Communication

    Quantum MDS Codes over Small Fields

    Full text link
    We consider quantum MDS (QMDS) codes for quantum systems of dimension qq with lengths up to q2+2q^2+2 and minimum distances up to q+1q+1. We show how starting from QMDS codes of length q2+1q^2+1 based on cyclic and constacyclic codes, new QMDS codes can be obtained by shortening. We provide numerical evidence for our conjecture that almost all admissible lengths, from a lower bound n0(q,d)n_0(q,d) on, are achievable by shortening. Some additional codes that fill gaps in the list of achievable lengths are presented as well along with a construction of a family of QMDS codes of length q2+2q^2+2, where q=2mq=2^m, that appears to be new.Comment: 6 pages, 3 figure
    • …
    corecore