1,428 research outputs found

    Noise thresholds for optical cluster-state quantum computation

    Get PDF
    In this paper we do a detailed numerical investigation of the fault-tolerant threshold for optical cluster-state quantum computation. Our noise model allows both photon loss and depolarizing noise, as a general proxy for all types of local noise other than photon loss noise. We obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible for photon loss probabilities less than 0.003, and for depolarization probabilities less than 0.0001. Our fault-tolerant protocol involves a number of innovations, including a method for syndrome extraction known as telecorrection, whereby repeated syndrome measurements are guaranteed to agree. This paper is an extended version of [Dawson et al., Phys. Rev. Lett. 96, 020501].Comment: 28 pages. Corrections made to Table I

    QuEST and High Performance Simulation of Quantum Computers

    Full text link
    We introduce QuEST, the Quantum Exact Simulation Toolkit, and compare it to ProjectQ, qHipster and a recent distributed implementation of Quantum++. QuEST is the first open source, OpenMP and MPI hybridised, GPU accelerated simulator of universal quantum circuits. Embodied as a C library, it is designed so that a user's code can be deployed seamlessly to any platform from a laptop to a supercomputer. QuEST is capable of simulating generic quantum circuits of general single-qubit gates and multi-qubit controlled gates, on pure and mixed states, represented as state-vectors and density matrices, and under the presence of decoherence. Using the ARCUS Phase-B and ARCHER supercomputers, we benchmark QuEST's simulation of random circuits of up to 38 qubits, distributed over up to 2048 compute nodes, each with up to 24 cores. We directly compare QuEST's performance to ProjectQ's on single machines, and discuss the differences in distribution strategies of QuEST, qHipster and Quantum++. QuEST shows excellent scaling, both strong and weak, on multicore and distributed architectures.Comment: 8 pages, 8 figures; fixed typos; updated QuEST URL and fixed typo in Fig. 4 caption where ProjectQ and QuEST were swapped in speedup subplot explanation; added explanation of simulation algorithm, updated bibliography; stressed technical novelty of QuEST; mentioned new density matrix suppor

    Deep Quantum Circuit Simulations of Low-Energy Nuclear States

    Full text link
    Numerical simulation is an important method for verifying the quantum circuits used to simulate low-energy nuclear states. However, real-world applications of quantum computing for nuclear theory often generate deep quantum circuits that place demanding memory and processing requirements on conventional simulation methods. Here, we present advances in high-performance numerical simulations of deep quantum circuits to efficiently verify the accuracy of low-energy nuclear physics applications. Our approach employs several novel methods for accelerating the numerical simulation including 1- and 2-qubit gate fusion techniques as well as management of simulated mid-circuit measurements to verify state preparation circuits. We test these methods across a variety of high-performance computing systems and our results show that circuits up to 21 qubits and more than 115,000,000 gates can be efficiently simulated

    Resource costs for fault-tolerant linear optical quantum computing

    Full text link
    Linear optical quantum computing (LOQC) seems attractively simple: information is borne entirely by light and processed by components such as beam splitters, phase shifters and detectors. However this very simplicity leads to limitations, such as the lack of deterministic entangling operations, which are compensated for by using substantial hardware overheads. Here we quantify the resource costs for full scale LOQC by proposing a specific protocol based on the surface code. With the caveat that our protocol can be further optimised, we report that the required number of physical components is at least five orders of magnitude greater than in comparable matter-based systems. Moreover the resource requirements grow higher if the per-component photon loss rate is worse than one in a thousand, or the per-component noise rate is worse than 10−510^{-5}. We identify the performance of switches in the network as the single most influential factor influencing resource scaling
    • …
    corecore