74 research outputs found

    Quantum XOR Games

    Get PDF
    We introduce quantum XOR games, a model of two-player one-round games that extends the model of XOR games by allowing the referee's questions to the players to be quantum states. We give examples showing that quantum XOR games exhibit a wide range of behaviors that are known not to exist for standard XOR games, such as cases in which the use of entanglement leads to an arbitrarily large advantage over the use of no entanglement. By invoking two deep extensions of Grothendieck's inequality, we present an efficient algorithm that gives a constant-factor approximation to the best performance players can obtain in a given game, both in case they have no shared entanglement and in case they share unlimited entanglement. As a byproduct of the algorithm we prove some additional interesting properties of quantum XOR games, such as the fact that sharing a maximally entangled state of arbitrary dimension gives only a small advantage over having no entanglement at all.Comment: 43 page

    Quantum XOR Games

    Get PDF
    We introduce quantum XOR games, a model of two-player, one-round games that extends the model of XOR games by allowing the referee’s questions to the players to be quantum states. We give examples showing that quantum XOR games exhibit a wide range of behaviors that are known not to exist for standard XOR games, such as cases in which the use of entanglement leads to an arbitrarily large advantage over the use of no entanglement. By invoking two deep extensions of Grothendieck’s inequality, we present an efficient algorithm that gives a constant-factor approximation to the best performance that players can obtain in a given game, both in the case that they have no shared entanglement and that they share unlimited entanglement. As a byproduct of the algorithm, we prove some additional interesting properties of quantum XOR games, such as the fact that sharing a maximally entangled state of arbitrary dimension gives only a small advantage over having no entanglement at all

    On the Bohnenblust-Hille inequality and a variant of Littlewood's 4/3 inequality

    Get PDF
    The search for sharp constants for inequalities of the type Littlewood's 4/3 and Bohnenblust-Hille, besides its pure mathematical interest, has shown unexpected applications in many different fields, such as Analytic Number Theory, Quantum Information Theory, or (for instance) in deep results on the nn-dimensional Bohr radius. The recent estimates obtained for the multilinear Bohnenblust-Hille inequality (in the case of real scalars) have been recently used, as a crucial step, by A. Montanaro in order to solve problems in the theory of quantum XOR games. Here, among other results, we obtain new upper bounds for the Bohnenblust-Hille constants in the case of complex scalars. For bilinear forms, we obtain the optimal constants of variants of Littlewood's 4/3 inequality (in the case of real scalars) when the exponent 4/3 is replaced by any r≄4/3.r\geq4/3. As a consequence of our estimates we show that the optimal constants for the real case are always strictly greater than the constants for the complex case

    Noise in Quantum and Classical Computation & Non-locality

    Get PDF
    Quantum computers seem to have capabilities which go beyond those of classical computers. A particular example which is important for cryptography is that quantum computers are able to factor numbers much faster than what seems possible on classical machines. In order to actually build quantum computers it is necessary to build sufficiently accurate hardware, which is a big challenge. In part 1 of this thesis we prove lower bounds on the accuracy of the hardware needed to do quantum computation. We also present a similar result for classical computers. One resource that quantum computers have but classical computers do not have is entanglement. In Part 2 of this thesis we study certain general aspects of entanglement in terms of quantum XOR games and non-locality

    On the relation between completely bounded and (1, cb)- summing maps with applications to quantum xor games

    Get PDF
    In this work we show that, given a linear map from a general operator space into the dual of a C∗ -algebra, its completely bounded norm is upper bounded by a universal constant times its (1, cb)-summing norm. This problem is motivated by the study of quantum XOR games in the field of quantum information theory. In particular, our results imply that for such games entangled strategies cannot be arbitrarily better than those strategies using one-way classical communication
    • 

    corecore