6,103 research outputs found

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Two Results about Quantum Messages

    Full text link
    We show two results about the relationship between quantum and classical messages. Our first contribution is to show how to replace a quantum message in a one-way communication protocol by a deterministic message, establishing that for all partial Boolean functions f:{0,1}n×{0,1}m{0,1}f:\{0,1\}^n\times\{0,1\}^m\to\{0,1\} we have DAB(f)O(QAB,(f)m)D^{A\to B}(f)\leq O(Q^{A\to B,*}(f)\cdot m). This bound was previously known for total functions, while for partial functions this improves on results by Aaronson, in which either a log-factor on the right hand is present, or the left hand side is RAB(f)R^{A\to B}(f), and in which also no entanglement is allowed. In our second contribution we investigate the power of quantum proofs over classical proofs. We give the first example of a scenario, where quantum proofs lead to exponential savings in computing a Boolean function. The previously only known separation between the power of quantum and classical proofs is in a setting where the input is also quantum. We exhibit a partial Boolean function ff, such that there is a one-way quantum communication protocol receiving a quantum proof (i.e., a protocol of type QMA) that has cost O(logn)O(\log n) for ff, whereas every one-way quantum protocol for ff receiving a classical proof (protocol of type QCMA) requires communication Ω(n/logn)\Omega(\sqrt n/\log n)

    NP-complete Problems and Physical Reality

    Full text link
    Can NP-complete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantum-mechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, Malament-Hogarth spacetimes, quantum gravity, closed timelike curves, and "anthropic computing." The section on soap bubbles even includes some "experimental" results. While I do not believe that any of the proposals will let us solve NP-complete problems efficiently, I argue that by studying them, we can learn something not only about computation but also about physics.Comment: 23 pages, minor correction

    Semantic Security and Indistinguishability in the Quantum World

    Get PDF
    At CRYPTO 2013, Boneh and Zhandry initiated the study of quantum-secure encryption. They proposed first indistinguishability definitions for the quantum world where the actual indistinguishability only holds for classical messages, and they provide arguments why it might be hard to achieve a stronger notion. In this work, we show that stronger notions are achievable, where the indistinguishability holds for quantum superpositions of messages. We investigate exhaustively the possibilities and subtle differences in defining such a quantum indistinguishability notion for symmetric-key encryption schemes. We justify our stronger definition by showing its equivalence to novel quantum semantic-security notions that we introduce. Furthermore, we show that our new security definitions cannot be achieved by a large class of ciphers -- those which are quasi-preserving the message length. On the other hand, we provide a secure construction based on quantum-resistant pseudorandom permutations; this construction can be used as a generic transformation for turning a large class of encryption schemes into quantum indistinguishable and hence quantum semantically secure ones. Moreover, our construction is the first completely classical encryption scheme shown to be secure against an even stronger notion of indistinguishability, which was previously known to be achievable only by using quantum messages and arbitrary quantum encryption circuits.Comment: 37 pages, 2 figure

    On Perfect Completeness for QMA

    Get PDF
    Whether the class QMA (Quantum Merlin Arthur) is equal to QMA1, or QMA with one-sided error, has been an open problem for years. This note helps to explain why the problem is difficult, by using ideas from real analysis to give a "quantum oracle" relative to which they are different. As a byproduct, we find that there are facts about quantum complexity classes that are classically relativizing but not quantumly relativizing, among them such "trivial" containments as BQP in ZQEXP.Comment: 9 pages. To appear in Quantum Information & Computatio
    corecore