6 research outputs found

    Exponential Separation between Quantum Communication and Logarithm of Approximate Rank

    Get PDF
    Chattopadhyay, Mande and Sherif (ECCC 2018) recently exhibited a total Boolean function, the sink function, that has polynomial approximate rank and polynomial randomized communication complexity. This gives an exponential separation between randomized communication complexity and logarithm of the approximate rank, refuting the log-approximate-rank conjecture. We show that even the quantum communication complexity of the sink function is polynomial, thus also refuting the quantum log-approximate-rank conjecture. Our lower bound is based on the fooling distribution method introduced by Rao and Sinha (ECCC 2015) for the classical case and extended by Anshu, Touchette, Yao and Yu (STOC 2017) for the quantum case. We also give a new proof of the classical lower bound using the fooling distribution method.Comment: The same lower bound has been obtained independently and simultaneously by Anurag Anshu, Naresh Goud Boddu and Dave Touchett

    Exponential separation between quantum communication and logarithm of approximate rank

    Get PDF
    Chattopadhyay, Mande and Sherif (ECCC 2018) recently exhibited a total Boolean function, the sink function, that has polynomial approximate rank and polynomial randomized communication complexity. This gives an exponential separation between randomized communication complexity and logarithm of the approximate rank, refuting the log-approximate-rank conjecture. We show that even the quantum communication complexity of the sink function is polynomial, thus also refuting the quantum log-approximate-rank conjecture. Our lower bound is based on the fooling distribution method introduced by Rao and Sinha (ECCC 2015) for the classical case and extended by Anshu, Touchette, Yao and Yu (STOC 2017) for the quantum case. We also give a new proof of the classical lower bound using the fooling distribution method.</p

    Quantum Computing: Lecture Notes

    Get PDF
    This is a set of lecture notes suitable for a Master's course on quantum computation and information from the perspective of theoretical computer science. The first version was written in 2011, with many extensions and improvements in subsequent years. The first 10 chapters cover the circuit model and the main quantum algorithms (Deutsch-Jozsa, Simon, Shor, Hidden Subgroup Problem, Grover, quantum walks, Hamiltonian simulation and HHL). They are followed by 2 chapters about complexity, 4 chapters about distributed ("Alice and Bob") settings, and a final chapter about quantum error correction. Appendices A and B give a brief introduction to the required linear algebra and some other mathematical and computer science background. All chapters come with exercises, with some hints provided in Appendix C

    Quantum Computing: Lecture Notes

    Full text link
    This is a set of lecture notes suitable for a Master's course on quantum computation and information from the perspective of theoretical computer science. The first version was written in 2011, with many extensions and improvements in subsequent years. The first 10 chapters cover the circuit model and the main quantum algorithms (Deutsch-Jozsa, Simon, Shor, Hidden Subgroup Problem, Grover, quantum walks, Hamiltonian simulation and HHL). They are followed by 3 chapters about complexity, 4 chapters about distributed ("Alice and Bob") settings, and a final chapter about quantum error correction. Appendices A and B give a brief introduction to the required linear algebra and some other mathematical and computer science background. All chapters come with exercises, with some hints provided in Appendix C.Comment: 184 pages. Version 2: added a new chapter about QMA and local Hamiltonian, more exercises in several chapters, and some small corrections/clarification
    corecore