305 research outputs found

    On the solution of trivalent decision problems by quantum state identification

    Full text link
    The trivalent functions of a trit can be grouped into equipartitions of three elements. We discuss the separation of the corresponding functional classes by quantum state identifications

    How many functions can be distinguished with k quantum queries?

    Get PDF
    Suppose an oracle is known to hold one of a given set of D two-valued functions. To successfully identify which function the oracle holds with k classical queries, it must be the case that D is at most 2^k. In this paper we derive a bound for how many functions can be distinguished with k quantum queries.Comment: 5 pages. Lower bound on sorting n items improved to (1-epsilon)n quantum queries. Minor changes to text and corrections to reference

    Query complexity for searching multiple marked states from an unsorted database

    Full text link
    An important and usual problem is to search all states we want from a database with a large number of states. In such, recall is vital. Grover's original quantum search algorithm has been generalized to the case of multiple solutions, but no one has calculated the query complexity in this case. We will use a generalized algorithm with higher precision to solve such a search problem that we should find all marked states and show that the practical query complexity increases with the number of marked states. In the end we will introduce an algorithm for the problem on a ``duality computer'' and show its advantage over other algorithms.Comment: 4 pages,4 figures,twocolum

    Two Classical Queries versus One Quantum Query

    Get PDF
    In this note we study the power of so called query-limited computers. We compare the strength of a classical computer that is allowed to ask two questions to an NP-oracle with the strength of a quantum computer that is allowed only one such query. It is shown that any decision problem that requires two parallel (non-adaptive) SAT-queries on a classical computer can also be solved exactly by a quantum computer using only one SAT-oracle call, where both computations have polynomial time-complexity. Such a simulation is generally believed to be impossible for a one-query classical computer. The reduction also does not hold if we replace the SAT-oracle by a general black-box. This result gives therefore an example of how a quantum computer is probably more powerful than a classical computer. It also highlights the potential differences between quantum complexity results for general oracles when compared to results for more structured tasks like the SAT-problem.Comment: 6 pages, LaTeX2e, no figures, minor changes and correction
    corecore