52 research outputs found

    Quantum Key Distribution with Classical Bob

    Get PDF
    Secure key distribution among two remote parties is impossible when both are classical, unless some unproven (and arguably unrealistic) computation-complexity assumptions are made, such as the difficulty of factorizing large numbers. On the other hand, a secure key distribution is possible when both parties are quantum. What is possible when only one party (Alice) is quantum, yet the other (Bob) has only classical capabilities? We present a protocol with this constraint, and prove its robustness against attacks: we prove that any attempt of an adversary to obtain information (and even a tiny amount of information) necessarily induces some errors that the legitimate users could notice.Comment: 4 and a bit pages, 1 figure, RevTe

    Attacks against a Simplified Experimentally Feasible Semiquantum Key Distribution Protocol

    Full text link
    A semiquantum key distribution (SQKD) protocol makes it possible for a quantum party and a classical party to generate a secret shared key. However, many existing SQKD protocols are not experimentally feasible in a secure way using current technology. An experimentally feasible SQKD protocol, "classical Alice with a controllable mirror" (the "Mirror protocol"), has recently been presented and proved completely robust, but it is more complicated than other SQKD protocols. Here we prove a simpler variant of the Mirror protocol (the "simplified Mirror protocol") to be completely non-robust by presenting two possible attacks against it. Our results show that the complexity of the Mirror protocol is at least partly necessary for achieving robustness.Comment: 9 page

    Semi-quantum communication: Protocols for key agreement, controlled secure direct communication and dialogue

    Full text link
    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Further, it addresses a fundamental question in context of a large number problems- how much quantumness is (how many quantum parties are) required to perform a specific secure communication task? Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate-coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.Comment: 19 pages 1 figur
    corecore