163,968 research outputs found

    Quantum Information Processing and Relativistic Quantum Fields

    Full text link
    It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of field modes are shown to lead to superluminal signalling. Such detectors do, however, provide successful phenomenological models of atom-qubits interacting with quantum fields in a cavity but are valid only on time scales many orders of magnitude larger than the light-crossing time of the cavity.Comment: 16 pages, 2 figures. Improved abstract and discussion of 'ideal' measurements. References to previous work adde

    Human Conscious Experience is Four-Dimensional and has a Neural Correlate Modeled by Einstein's Special Theory of Relativity

    Get PDF
    In humans, knowing the world occurs through spatial-temporal experiences and interpretations. Conscious experience is the direct observation of conscious events. It makes up the content of consciousness. Conscious experience is organized in four dimensions. It is an orientation in space and time, an understanding of the position of the observer in space and time. A neural correlate for four-dimensional conscious experience has been found in the human brain which is modeled by Einstein’s Special Theory of Relativity. Spacetime intervals are fundamentally involved in the organization of coherent conscious experiences. They account for why conscious experience appears to us the way it does. They also account for assessment of causality and past-future relationships, the integration of higher cognitive functions, and the implementation of goal-directed behaviors. Spacetime intervals in effect compose and direct our conscious life. The relativistic concept closes the explanatory gap and solves the hard problem of consciousness (how something subjective like conscious experience can arise in something physical like the brain). There is a place in physics for consciousness. We describe all physical phenomena through conscious experience, whether they be described at the quantum level or classical level. Since spacetime intervals direct the formation of all conscious experiences and all physical phenomena are described through conscious experience, the equation formulating spacetime intervals contains the information from which all observable phenomena may be deduced. It might therefore be considered expression of a theory of everything

    Computational capacity of the universe

    Full text link
    Merely by existing, all physical systems register information. And by evolving dynamically in time, they transform and process that information. The laws of physics determine the amount of information that a physical system can register (number of bits) and the number of elementary logic operations that a system can perform (number of ops). The universe is a physical system. This paper quantifies the amount of information that the universe can register and the number of elementary operations that it can have performed over its history. The universe can have performed no more than 1012010^{120} ops on 109010^{90} bits.Comment: 17 pages, TeX. submitted to Natur

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Information, information processing and gravity

    Full text link
    I discuss fundamental limits placed on information and information processing by gravity. Such limits arise because both information and its processing require energy, while gravitational collapse (formation of a horizon or black hole) restricts the amount of energy allowed in a finite region. Specifically, I use a criterion for gravitational collapse called the hoop conjecture. Once the hoop conjecture is assumed a number of results can be obtained directly: the existence of a fundamental uncertainty in spatial distance of order the Planck length, bounds on information (entropy) in a finite region, and a bound on the rate of information processing in a finite region. In the final section I discuss some cosmological issues related to the total amount of information in the universe, and note that almost all detailed aspects of the late universe are determined by the randomness of quantum outcomes. This paper is based on a talk presented at a 2007 Bellairs Research Institute (McGill University) workshop on black holes and quantum information.Comment: 7 pages, 5 figures, revte

    Integrated quantum optical networks based on quantum dots and photonic crystals

    Get PDF
    Single solid-state optical emitters have quantum mechanical properties that make them suitable for applications in information processing and sensing. Most of these quantum technologies rely on the capability to integrate the emitters in reliable solid-state optical networks. In this paper, we present integrated devices based on GaAs photonic crystals and InAs self-assembled quantum dots. These quantum networks are well suited to future optoelectronic devices operating at ultralow power levels, single-photon logic devices and quantum information processing
    • …
    corecore