113,381 research outputs found

    Monte Carlo sampling from the quantum state space. I

    Full text link
    High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the standard strategies of rejection sampling, importance sampling, and Markov-chain sampling can be adapted to this context, where the samples must obey the constraints imposed by the positivity of the statistical operator. For a comparison of these sampling methods, we generate sample points in the probability space for two-qubit states probed with a tomographically incomplete measurement, and then use the sample for the calculation of the size and credibility of the recently-introduced optimal error regions [see New J. Phys. 15 (2013) 123026]. Another illustration is the computation of the fractional volume of separable two-qubit states.Comment: 13 pages, 5 figures, 1 table, 26 reference

    Computational capacity of the universe

    Full text link
    Merely by existing, all physical systems register information. And by evolving dynamically in time, they transform and process that information. The laws of physics determine the amount of information that a physical system can register (number of bits) and the number of elementary logic operations that a system can perform (number of ops). The universe is a physical system. This paper quantifies the amount of information that the universe can register and the number of elementary operations that it can have performed over its history. The universe can have performed no more than 1012010^{120} ops on 109010^{90} bits.Comment: 17 pages, TeX. submitted to Natur

    Climbing Mount Scalable: Physical-Resource Requirements for a Scalable Quantum Computer

    Full text link
    The primary resource for quantum computation is Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a demand for an exponential amount of these resources places a fundamental constraint on the systems that are suitable for scalable quantum computation. To be scalable, the effective number of degrees of freedom in the computer must grow nearly linearly with the number of qubits in an equivalent qubit-based quantum computer.Comment: LATEX, 24 pages, 1 color .eps figure. This new version has been accepted for publication in Foundations of Physic

    Physical-resource demands for scalable quantum computation

    Full text link
    The primary resource for quantum computation is Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a demand for an exponential amount of these resources places a fundamental constraint on the systems that are suitable for scalable quantum computation. To be scalable, the number of degrees of freedom in the computer must grow nearly linearly with the number of qubits in an equivalent qubit-based quantum computer.Comment: This paper will be published in the proceedings of the SPIE Conference on Fluctuations and Noise in Photonics and Quantum Optics, Santa Fe, New Mexico, June 1--4, 200

    Synthesis of Topological Quantum Circuits

    Full text link
    Topological quantum computing has recently proven itself to be a very powerful model when considering large- scale, fully error corrected quantum architectures. In addition to its robust nature under hardware errors, it is a software driven method of error corrected computation, with the hardware responsible for only creating a generic quantum resource (the topological lattice). Computation in this scheme is achieved by the geometric manipulation of holes (defects) within the lattice. Interactions between logical qubits (quantum gate operations) are implemented by using particular arrangements of the defects, such as braids and junctions. We demonstrate that junction-based topological quantum gates allow highly regular and structured implementation of large CNOT (controlled-not) gate networks, which ultimately form the basis of the error corrected primitives that must be used for an error corrected algorithm. We present a number of heuristics to optimise the area of the resulting structures and therefore the number of the required hardware resources.Comment: 7 Pages, 10 Figures, 1 Tabl

    Quantum Bounded Query Complexity

    Get PDF
    We combine the classical notions and techniques for bounded query classes with those developed in quantum computing. We give strong evidence that quantum queries to an oracle in the class NP does indeed reduce the query complexity of decision problems. Under traditional complexity assumptions, we obtain an exponential speedup between the quantum and the classical query complexity of function classes. For decision problems and function classes we obtain the following results: o P_||^NP[2k] is included in EQP_||^NP[k] o P_||^NP[2^(k+1)-2] is included in EQP^NP[k] o FP_||^NP[2^(k+1)-2] is included in FEQP^NP[2k] o FP_||^NP is included in FEQP^NP[O(log n)] For sets A that are many-one complete for PSPACE or EXP we show that FP^A is included in FEQP^A[1]. Sets A that are many-one complete for PP have the property that FP_||^A is included in FEQP^A[1]. In general we prove that for any set A there is a set X such that FP^A is included in FEQP^X[1], establishing that no set is superterse in the quantum setting.Comment: 11 pages LaTeX2e, no figures, accepted for CoCo'9
    corecore