14 research outputs found

    On Statistical Query Sampling and NMR Quantum Computing

    Full text link
    We introduce a ``Statistical Query Sampling'' model, in which the goal of an algorithm is to produce an element in a hidden set SsubseteqbitnSsubseteqbit^n with reasonable probability. The algorithm gains information about SS through oracle calls (statistical queries), where the algorithm submits a query function g(cdot)g(cdot) and receives an approximation to PrxinS[g(x)=1]Pr_{x in S}[g(x)=1]. We show how this model is related to NMR quantum computing, in which only statistical properties of an ensemble of quantum systems can be measured, and in particular to the question of whether one can translate standard quantum algorithms to the NMR setting without putting all of their classical post-processing into the quantum system. Using Fourier analysis techniques developed in the related context of {em statistical query learning}, we prove a number of lower bounds (both information-theoretic and cryptographic) on the ability of algorithms to produces an xinSxin S, even when the set SS is fairly simple. These lower bounds point out a difficulty in efficiently applying NMR quantum computing to algorithms such as Shor's and Simon's algorithm that involve significant classical post-processing. We also explicitly relate the notion of statistical query sampling to that of statistical query learning. An extended abstract appeared in the 18th Aunnual IEEE Conference of Computational Complexity (CCC 2003), 2003. Keywords: statistical query, NMR quantum computing, lower boundComment: 17 pages, no figures. Appeared in 18th Aunnual IEEE Conference of Computational Complexity (CCC 2003

    The hidden subgroup problem and quantum computation using group representations

    Get PDF
    The hidden subgroup problem is the foundation of many quantum algorithms. An efficient solution is known for the problem over abelian groups, employed by both Simon's algorithm and Shor's factoring and discrete log algorithms. The nonabelian case, however, remains open; an efficient solution would give rise to an efficient quantum algorithm for graph isomorphism. We fully analyze a natural generalization of the algorithm for the abelian case to the nonabelian case and show that the algorithm determines the normal core of a hidden subgroup: in particular, normal subgroups can be determined. We show, however, that this immediate generalization of the abelian algorithm does not efficiently solve graph isomorphism

    The Power of Strong Fourier Sampling: Quantum Algorithms for Affine Groups and Hidden Shifts

    Get PDF
    Many quantum algorithms, including Shor's celebrated factoring and discrete log algorithms, proceed by reduction to a hidden subgroup problem, in which an unknown subgroup HH of a group GG must be determined from a quantum state ψ\psi over GG that is uniformly supported on a left coset of HH. These hidden subgroup problems are typically solved by Fourier sampling: the quantum Fourier transform of ψ\psi is computed and measured. When the underlying group is nonabelian, two important variants of the Fourier sampling paradigm have been identified: the weak standard method, where only representation names are measured, and the strong standard method, where full measurement (i.e., the row and column of the representation, in a suitably chosen basis, as well as its name) occurs. It has remained open whether the strong standard method is indeed stronger, that is, whether there are hidden subgroups that can be reconstructed via the strong method but not by the weak, or any other known, method. In this article, we settle this question in the affirmative. We show that hidden subgroups HH of the qq-hedral groups, i.e., semidirect products ZqZp{\mathbb Z}_q \ltimes {\mathbb Z}_p, where q(p1)q \mid (p-1), and in particular the affine groups ApA_p, can be information-theoretically reconstructed using the strong standard method. Moreover, if H=p/polylog(p)|H| = p/ {\rm polylog}(p), these subgroups can be fully reconstructed with a polynomial amount of quantum and classical computation. We compare our algorithms to two weaker methods that have been discussed in the literature—the “forgetful” abelian method, and measurement in a random basis—and show that both of these are weaker than the strong standard method. Thus, at least for some families of groups, it is crucial to use the full power of representation theory and nonabelian Fourier analysis, namely, to measure the high-dimensional representations in an adapted basis that respects the group's subgroup structure. We apply our algorithm for the hidden subgroup problem to new families of cryptographically motivated hidden shift problems, generalizing the work of van Dam, Hallgren, and Ip on shifts of multiplicative characters. Finally, we close by proving a simple closure property for the class of groups over which the hidden subgroup problem can be solved efficiently

    The Symmetric Group Defies Strong Fourier Sampling

    Get PDF
    The dramatic exponential speedups of quantum algorithms over their best existing classical counterparts were ushered in by the technique of Fourier sampling, introduced by Bernstein and Vazirani and developed by Simon and Shor into an approach to the hidden subgroup problem. This approach has proved successful for abelian groups, leading to efficient algorithms for factoring, extracting discrete logarithms, and other number-theoretic problems. We show, however, that this method cannot resolve the hidden subgroup problem in the symmetric groups, even in the weakest, information-theoretic sense. In particular, we show that the Graph Isomorphism problem cannot be solved by this approach. Our work implies that any quantum approach based upon the measurement of coset states must depart from the original framework by using entangled measurements on multiple coset states
    corecore