654,658 research outputs found

    Quantum control theory and applications: A survey

    Full text link
    This paper presents a survey on quantum control theory and applications from a control systems perspective. Some of the basic concepts and main developments (including open-loop control and closed-loop control) in quantum control theory are reviewed. In the area of open-loop quantum control, the paper surveys the notion of controllability for quantum systems and presents several control design strategies including optimal control, Lyapunov-based methodologies, variable structure control and quantum incoherent control. In the area of closed-loop quantum control, the paper reviews closed-loop learning control and several important issues related to quantum feedback control including quantum filtering, feedback stabilization, LQG control and robust quantum control.Comment: 38 pages, invited survey paper from a control systems perspective, some references are added, published versio

    Feedback control of quantum state reduction

    Get PDF
    Feedback control of quantum mechanical systems must take into account the probabilistic nature of quantum measurement. We formulate quantum feedback control as a problem of stochastic nonlinear control by considering separately a quantum filtering problem and a state feedback control problem for the filter. We explore the use of stochastic Lyapunov techniques for the design of feedback controllers for quantum spin systems and demonstrate the possibility of stabilizing one outcome of a quantum measurement with unit probability

    Achieving robust and high-fidelity quantum control via spectral phase optimization

    Full text link
    Achieving high-fidelity control of quantum systems is of fundamental importance in physics, chemistry and quantum information sciences. However, the successful implementation of a high-fidelity quantum control scheme also requires robustness against control field fluctuations. Here, we demonstrate a robust optimization method for control of quantum systems by optimizing the spectral phase of an ultrafast laser pulse, which is accomplished in the framework of frequency domain quantum optimal control theory. By incorporating a filtering function of frequency into the optimization algorithm, our numerical simulations in an abstract two-level quantum system as well as in a three-level atomic rubidium show that the optimization procedure can be enforced to search optimal solutions while achieving remarkable robustness against the control field fluctuations, providing an efficient approach to optimize the spectral phase of the ultrafast laser pulse to achieve a desired final quantum state of the system.Comment: 17 pages, 8 figure

    Quantum control by compensation of quantum fluctuations

    Get PDF
    We show that the influence of quantum fluctuations in the electromagnetic field vacuum on a two level atom can be measured and consequently compensated by balanced homodyne detection and a coherent feedback field. This compensation suppresses the decoherence associated with spontaneous emission for a specific state of the atomic system allowing complete control of the coherent state of the system.Comment: 5 pages RevTex and 2 figures, to be published in Optics Expres

    Quantum Control Landscapes

    Full text link
    Numerous lines of experimental, numerical and analytical evidence indicate that it is surprisingly easy to locate optimal controls steering quantum dynamical systems to desired objectives. This has enabled the control of complex quantum systems despite the expense of solving the Schrodinger equation in simulations and the complicating effects of environmental decoherence in the laboratory. Recent work indicates that this simplicity originates in universal properties of the solution sets to quantum control problems that are fundamentally different from their classical counterparts. Here, we review studies that aim to systematically characterize these properties, enabling the classification of quantum control mechanisms and the design of globally efficient quantum control algorithms.Comment: 45 pages, 15 figures; International Reviews in Physical Chemistry, Vol. 26, Iss. 4, pp. 671-735 (2007
    corecore