10,907 research outputs found

    Quantum Bit Commitment with Application in Quantum Zero-Knowledge Proof

    Get PDF
    Watrous (STOC 2006) proved that plugging classical bit commitment scheme that is secure against quantum attack into the GMW-type construction of zero-knowledge gives a classical zero-knowledge proof that is secure against quantum attack. In this paper, we showed that plugging quantum bit commitment scheme (allowing quantum computation and communication) into the GMW-type construction also gives a quantum zero-knowledge proof, as one expects. However, since the binding condition of quantum bit commitment scheme is inherently different from its classical counterpart, compared with Watrous\u27 security proof, here we encounter new difficulty in soundness analysis. To overcome the difficulty, we take a geometric approach, managing to reduce quantum soundness analysis to classical soundness analysis. We also propose a formalization of non-interactive quantum bit commitment scheme, which may come in handy in other places. Moreover, inspired by our formalization, we generalize Naor\u27s construction of bit commitment scheme to the quantum setting, achieving non-interactive commit stage. We hope quantum bit commitment scheme can find more applications in quantum cryptography

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    Cryptographic Randomized Response Techniques

    Full text link
    We develop cryptographically secure techniques to guarantee unconditional privacy for respondents to polls. Our constructions are efficient and practical, and are shown not to allow cheating respondents to affect the ``tally'' by more than their own vote -- which will be given the exact same weight as that of other respondents. We demonstrate solutions to this problem based on both traditional cryptographic techniques and quantum cryptography.Comment: 21 page

    Possibility, Impossibility and Cheat-Sensitivity of Quantum Bit String Commitment

    Get PDF
    Unconditionally secure non-relativistic bit commitment is known to be impossible in both the classical and the quantum worlds. But when committing to a string of n bits at once, how far can we stretch the quantum limits? In this paper, we introduce a framework for quantum schemes where Alice commits a string of n bits to Bob in such a way that she can only cheat on a bits and Bob can learn at most b bits of information before the reveal phase. Our results are two-fold: we show by an explicit construction that in the traditional approach, where the reveal and guess probabilities form the security criteria, no good schemes can exist: a+b is at least n. If, however, we use a more liberal criterion of security, the accessible information, we construct schemes where a=4log n+O(1) and b=4, which is impossible classically. We furthermore present a cheat-sensitive quantum bit string commitment protocol for which we give an explicit tradeoff between Bob's ability to gain information about the committed string, and the probability of him being detected cheating.Comment: 10 pages, RevTex, 2 figure. v2: title change, cheat-sensitivity adde

    Universally Composable Quantum Multi-Party Computation

    Full text link
    The Universal Composability model (UC) by Canetti (FOCS 2001) allows for secure composition of arbitrary protocols. We present a quantum version of the UC model which enjoys the same compositionality guarantees. We prove that in this model statistically secure oblivious transfer protocols can be constructed from commitments. Furthermore, we show that every statistically classically UC secure protocol is also statistically quantum UC secure. Such implications are not known for other quantum security definitions. As a corollary, we get that quantum UC secure protocols for general multi-party computation can be constructed from commitments

    Classical Cryptographic Protocols in a Quantum World

    Get PDF
    Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers? Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world.Comment: Full version of an old paper in Crypto'11. Invited to IJQI. This is authors' copy with different formattin

    Lattice-Based proof of a shuffle

    Get PDF
    In this paper we present the first fully post-quantum proof of a shuffle for RLWE encryption schemes. Shuffles are commonly used to construct mixing networks (mix-nets), a key element to ensure anonymity in many applications such as electronic voting systems. They should preserve anonymity even against an attack using quantum computers in order to guarantee long-term privacy. The proof presented in this paper is built over RLWE commitments which are perfectly binding and computationally hiding under the RLWE assumption, thus achieving security in a post-quantum scenario. Furthermore we provide a new definition for a secure mixing node (mix-node) and prove that our construction satisfies this definition.Peer ReviewedPostprint (author's final draft

    Defeating classical bit commitments with a quantum computer

    Full text link
    It has been recently shown by Mayers that no bit commitment scheme is secure if the participants have unlimited computational power and technology. However it was noticed that a secure protocol could be obtained by forcing the cheater to perform a measurement. Similar situations had been encountered previously in the design of Quantum Oblivious Transfer. The question is whether a classical bit commitment could be used for this specific purpose. We demonstrate that, surprisingly, classical unconditionally concealing bit commitments do not help.Comment: 13 pages. Supersedes quant-ph/971202
    • …
    corecore