8,153 research outputs found

    Tunable disorder in a crystal of cold polar molecules

    Full text link
    In the present work, we demonstrate the possibility of controlling by an external field the dynamics of collective excitations (excitons) of molecules on an optical lattice. We show that a suitably chosen two-species mixture of ultracold polar molecules loaded on an optical lattice forms a phononless crystal, where exciton-impurity interactions can be controlled by applying an external electric field. This can be used for the controlled creation of many-body entangled states of ultracold molecules and the time-domain quantum simulation of disorder-induced localization and delocalization of quantum particles

    Emulating Molecular Orbitals and Electronic Dynamics with Ultracold Atoms

    Full text link
    In recent years, ultracold atoms in optical lattices have proven their great value as quantum simulators for studying strongly correlated phases and complex phenomena in solid-state systems. Here we reveal their potential as quantum simulators for molecular physics and propose a technique to image the three-dimensional molecular orbitals with high resolution. The outstanding tunability of ultracold atoms in terms of potential and interaction offer fully adjustable model systems for gaining deep insight into the electronic structure of molecules. We study the orbitals of an artificial benzene molecule and discuss the effect of tunable interactions in its conjugated pi electron system with special regard to localization and spin order. The dynamical time scales of ultracold atom simulators are on the order of milliseconds, which allows for the time-resolved monitoring of a broad range of dynamical processes. As an example, we compute the hole dynamics in the conjugated pi system of the artificial benzene molecule.Comment: 8 pages, 4 figure

    Large-scale multilayer architecture of single-atom arrays with individual addressability

    Full text link
    We report on the realization of large-scale 3D multilayer configurations of planar arrays of individual neutral atoms with immediate applications in quantum science and technology: a microlens-generated Talbot optical lattice In this novel platform, the single-beam illumination of a microlens array constitutes a structurally robust and wavelength-universal method for the realization of 3D atom arrays with favourable scaling properties due to the inherent self-imaging of the focal structure. Thus, 3D scaling comes without the requirement of extra resources. We demonstrate the trapping and imaging of individual rubidium atoms and the in-plane assembly of defect-free single-atom arrays in several Talbot planes. We present interleaved lattices with dynamic position control and parallelized sub-lattice addressing of spin states

    Scalability of quantum computation with addressable optical lattices

    Get PDF
    We make a detailed analysis of error mechanisms, gate fidelity, and scalability of proposals for quantum computation with neutral atoms in addressable (large lattice constant) optical lattices. We have identified possible limits to the size of quantum computations, arising in 3D optical lattices from current limitations on the ability to perform single qubit gates in parallel and in 2D lattices from constraints on laser power. Our results suggest that 3D arrays as large as 100 x 100 x 100 sites (i.e., ∼106\sim 10^6 qubits) may be achievable, provided two-qubit gates can be performed with sufficiently high precision and degree of parallelizability. Parallelizability of long range interaction-based two-qubit gates is qualitatively compared to that of collisional gates. Different methods of performing single qubit gates are compared, and a lower bound of 1×10−51 \times 10^{-5} is determined on the error rate for the error mechanisms affecting 133^{133}Cs in a blue-detuned lattice with Raman transition-based single qubit gates, given reasonable limits on experimental parameters.Comment: 17 pages, 5 figures. Accepted for publication in Physical Review

    Designer quantum states of matter created atom-by-atom

    Full text link
    With the advances in high resolution and spin-resolved scanning tunneling microscopy as well as atomic-scale manipulation, it has become possible to create and characterize quantum states of matter bottom-up, atom-by-atom. This is largely based on controlling the particle- or wave-like nature of electrons, as well as the interactions between spins, electrons, and orbitals and their interplay with structure and dimensionality. We review the recent advances in creating artificial electronic and spin lattices that lead to various exotic quantum phases of matter, ranging from topological Dirac dispersion to complex magnetic order. We also project future perspectives in non-equilibrium dynamics, prototype technologies, engineered quantum phase transitions and topology, as well as the evolution of complexity from simplicity in this newly developing field

    Quantum control of molecular rotation

    Full text link
    The angular momentum of molecules, or, equivalently, their rotation in three-dimensional space, is ideally suited for quantum control. Molecular angular momentum is naturally quantized, time evolution is governed by a well-known Hamiltonian with only a few accurately known parameters, and transitions between rotational levels can be driven by external fields from various parts of the electromagnetic spectrum. Control over the rotational motion can be exerted in one-, two- and many-body scenarios, thereby allowing to probe Anderson localization, target stereoselectivity of bimolecular reactions, or encode quantum information, to name just a few examples. The corresponding approaches to quantum control are pursued within separate, and typically disjoint, subfields of physics, including ultrafast science, cold collisions, ultracold gases, quantum information science, and condensed matter physics. It is the purpose of this review to present the various control phenomena, which all rely on the same underlying physics, within a unified framework. To this end, we recall the Hamiltonian for free rotations, assuming the rigid rotor approximation to be valid, and summarize the different ways for a rotor to interact with external electromagnetic fields. These interactions can be exploited for control --- from achieving alignment, orientation, or laser cooling in a one-body framework, steering bimolecular collisions, or realizing a quantum computer or quantum simulator in the many-body setting.Comment: 52 pages, 11 figures, 607 reference
    • …
    corecore