585 research outputs found

    Multilevel Decoders Surpassing Belief Propagation on the Binary Symmetric Channel

    Full text link
    In this paper, we propose a new class of quantized message-passing decoders for LDPC codes over the BSC. The messages take values (or levels) from a finite set. The update rules do not mimic belief propagation but instead are derived using the knowledge of trapping sets. We show that the update rules can be derived to correct certain error patterns that are uncorrectable by algorithms such as BP and min-sum. In some cases even with a small message set, these decoders can guarantee correction of a higher number of errors than BP and min-sum. We provide particularly good 3-bit decoders for 3-left-regular LDPC codes. They significantly outperform the BP and min-sum decoders, but more importantly, they achieve this at only a fraction of the complexity of the BP and min-sum decoders.Comment: 5 pages, in Proc. of 2010 IEEE International Symposium on Information Theory (ISIT

    Analysis and Design of Binary Message-Passing Decoders

    Full text link
    Binary message-passing decoders for low-density parity-check (LDPC) codes are studied by using extrinsic information transfer (EXIT) charts. The channel delivers hard or soft decisions and the variable node decoder performs all computations in the L-value domain. A hard decision channel results in the well-know Gallager B algorithm, and increasing the output alphabet from hard decisions to two bits yields a gain of more than 1.0 dB in the required signal to noise ratio when using optimized codes. The code optimization requires adapting the mixing property of EXIT functions to the case of binary message-passing decoders. Finally, it is shown that errors on cycles consisting only of degree two and three variable nodes cannot be corrected and a necessary and sufficient condition for the existence of a cycle-free subgraph is derived.Comment: 8 pages, 6 figures, submitted to the IEEE Transactions on Communication

    Decoding of Non-Binary LDPC Codes Using the Information Bottleneck Method

    Full text link
    Recently, a novel lookup table based decoding method for binary low-density parity-check codes has attracted considerable attention. In this approach, mutual-information maximizing lookup tables replace the conventional operations of the variable nodes and the check nodes in message passing decoding. Moreover, the exchanged messages are represented by integers with very small bit width. A machine learning framework termed the information bottleneck method is used to design the corresponding lookup tables. In this paper, we extend this decoding principle from binary to non-binary codes. This is not a straightforward extension, but requires a more sophisticated lookup table design to cope with the arithmetic in higher order Galois fields. Provided bit error rate simulations show that our proposed scheme outperforms the log-max decoding algorithm and operates close to sum-product decoding.Comment: This paper has been presented at IEEE International Conference on Communications (ICC'19) in Shangha

    Iterative Quantization Using Codes On Graphs

    Full text link
    We study codes on graphs combined with an iterative message passing algorithm for quantization. Specifically, we consider the binary erasure quantization (BEQ) problem which is the dual of the binary erasure channel (BEC) coding problem. We show that duals of capacity achieving codes for the BEC yield codes which approach the minimum possible rate for the BEQ. In contrast, low density parity check codes cannot achieve the minimum rate unless their density grows at least logarithmically with block length. Furthermore, we show that duals of efficient iterative decoding algorithms for the BEC yield efficient encoding algorithms for the BEQ. Hence our results suggest that graphical models may yield near optimal codes in source coding as well as in channel coding and that duality plays a key role in such constructions.Comment: 10 page
    • …
    corecore