8,526 research outputs found

    Adaptive Quantization Matrices for HD and UHD Display Resolutions in Scalable HEVC

    Get PDF
    HEVC contains an option to enable custom quantization matrices, which are designed based on the Human Visual System and a 2D Contrast Sensitivity Function. Visual Display Units, capable of displaying video data at High Definition and Ultra HD display resolutions, are frequently utilized on a global scale. Video compression artifacts that are present due to high levels of quantization, which are typically inconspicuous in low display resolution environments, are clearly visible on HD and UHD video data and VDUs. The default QM technique in HEVC does not take into account the video data resolution, nor does it take into consideration the associated display resolution of a VDU to determine the appropriate levels of quantization required to reduce unwanted video compression artifacts. Based on this fact, we propose a novel, adaptive quantization matrix technique for the HEVC standard, including Scalable HEVC. Our technique, which is based on a refinement of the current HVS-CSF QM approach in HEVC, takes into consideration the display resolution of the target VDU for the purpose of minimizing video compression artifacts. In SHVC SHM 9.0, and compared with anchors, the proposed technique yields important quality and coding improvements for the Random Access configuration, with a maximum of 56.5% luma BD-Rate reductions in the enhancement layer. Furthermore, compared with the default QMs and the Sony QMs, our method yields encoding time reductions of 0.75% and 1.19%, respectively.Comment: Data Compression Conference 201

    A High performance and low cost hardware arcitecture for H.264 transform and quantization algorithms

    Get PDF
    In this paper, we present a high performance and low cost hardware architecture for real-time implementation of forward transform and quantization and inverse transform and quantization algorithms used in H.264 / MPEG4 Part 10 video coding standard. The hard-ware architecture is based on a reconfigurable datapath with only one multiplier. This hardware is designed to be used as part of a complete low power H.264 video coding system for portable appli-cations. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 81 MHz in a Xilinx Virtex II FPGA and it is verified to work at 210 MHz in a 0.18´ ASIC implementation. The FPGA and ASIC implementations can code 27 and 70 VGA frames (640x480) per second respectively

    On the rate-distortion performance and computational efficiency of the Karhunen-Loeve transform for lossy data compression

    Get PDF
    We examine the rate-distortion performance and computational complexity of linear transforms for lossy data compression. The goal is to better understand the performance/complexity tradeoffs associated with using the Karhunen-Loeve transform (KLT) and its fast approximations. Since the optimal transform for transform coding is unknown in general, we investigate the performance penalties associated with using the KLT by examining cases where the KLT fails, developing a new transform that corrects the KLT's failures in those examples, and then empirically testing the performance difference between this new transform and the KLT. Experiments demonstrate that while the worst KLT can yield transform coding performance at least 3 dB worse than that of alternative block transforms, the performance penalty associated with using the KLT on real data sets seems to be significantly smaller, giving at most 0.5 dB difference in our experiments. The KLT and its fast variations studied here range in complexity requirements from O(n^2) to O(n log n) in coding vectors of dimension n. We empirically investigate the rate-distortion performance tradeoffs associated with traversing this range of options. For example, an algorithm with complexity O(n^3/2) and memory O(n) gives 0.4 dB performance loss relative to the full KLT in our image compression experiment
    • …
    corecore