49,942 research outputs found

    Quantitative analysis of reinforcing phase in AlSi11/CrFe30C8 composite castings

    Get PDF
    In this paper assessment of the morphology and segregation of the reinforcing phase based on optical quantitative analysis was achieved. Microscopic observation of AlSi11/CrFe30C8 composite gravity castings was carried out in electromagnetic field. The purpose of investigation was the analysis of current frequency influence supplying the inductor of electromagnetic field on segregation, quantity and morphology of reinforcement phase in aluminum matrix composite. Technological conception of investigations was based on assumption that chromium-iron matrix of particles dissolved in aluminum composite matrix and carbide phases became actual reinforcement of the composite. Gravity segregation was analyzed. Graphs containing distribution of reinforcing phase in metal matrix were shown

    Thermal diffusion segregation in granular binary mixtures described by the Enskog equation

    Full text link
    Diffusion induced by a thermal gradient in a granular binary mixture is analyzed in the context of the (inelastic) Enskog equation. Although the Enskog equation neglects velocity correlations among particles which are about to collide, it retains spatial correlations arising from volume exclusion effects and thus it is expected to apply to moderate densities. In the steady state with gradients only along a given direction, a segregation criterion is obtained from the thermal diffusion factor Λ\Lambda measuring the amount of segregation parallel to the thermal gradient. As expected, the sign of the factor Λ\Lambda provides a criterion for the transition between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE) by varying the parameters of the mixture (masses, sizes, concentration, solid volume fraction, and coefficients of restitution). The form of the phase diagrams for the BNE/RBNE transition is illustrated in detail for several systems, with special emphasis on the significant role played by the inelasticity of collisions. In particular, an effect already found in dilute gases (segregation in a binary mixture of identical masses and sizes {\em but} different coefficients of restitution) is extended to dense systems. A comparison with recent computer simulation results shows a good qualitative agreement at the level of the thermal diffusion factor. The present analysis generalizes to arbitrary concentration previous theoretical results derived in the tracer limit case.Comment: 7 figures, 1 table. To appear in New J. Phys., special issue on "Granular Segregation

    Molecular dynamics simulation: a tool for exploration and discovery using simple models

    Full text link
    Emergent phenomena share the fascinating property of not being obvious consequences of the design of the system in which they appear. This characteristic is no less relevant when attempting to simulate such phenomena, given that the outcome is not always a foregone conclusion. The present survey focuses on several simple model systems that exhibit surprisingly rich emergent behavior, all studied by MD simulation. The examples are taken from the disparate fields of fluid dynamics, granular matter and supramolecular self-assembly. In studies of fluids modeled at the detailed microscopic level using discrete particles, the simulations demonstrate that complex hydrodynamic phenomena in rotating and convecting fluids, the Taylor-Couette and Rayleigh-B\'enard instabilities, can not only be observed within the limited length and time scales accessible to MD, but even quantitative agreement can be achieved. Simulation of highly counterintuitive segregation phenomena in granular mixtures, again using MD methods, but now augmented by forces producing damping and friction, leads to results that resemble experimentally observed axial and radial segregation in the case of a rotating cylinder, and to a novel form of horizontal segregation in a vertically vibrated layer. Finally, when modeling self-assembly processes analogous to the formation of the polyhedral shells that package spherical viruses, simulation of suitably shaped particles reveals the ability to produce complete, error-free assembly, and leads to the important general observation that reversible growth steps contribute to the high yield. While there are limitations to the MD approach, both computational and conceptual, the results offer a tantalizing hint of the kinds of phenomena that can be explored, and what might be discovered when sufficient resources are brought to bear on a problem.Comment: 21 pages, 20 figures (v2 - minor text addition

    Size Segregation of Granular Matter in Silo Discharges

    Full text link
    We present an experimental study of segregation of granular matter in a quasi-two dimensional silo emptying out of an orifice. Size separation is observed when multi-sized particles are used with the larger particles found in the center of the silo in the region of fastest flow. We use imaging to study the flow inside the silo and quantitatively measure the concentration profiles of bi-disperse beads as a function of position and time. The angle of the surface is given by the angle of repose of the particles, and the flow occurs in a few layers only near the top of this inclined surface. The flowing region becomes deeper near the center of the silo and is confined to a parabolic region centered at the orifice which is approximately described by the kinematic model. The experimental evidence suggests that the segregation occurs on the surface and not in the flow deep inside the silo where velocity gradients also are present. We report the time development of the concentrations of the bi-disperse particles as a function of size ratios, flow rate, and the ratio of initial mixture. The qualitative aspects of the observed phenomena may be explained by a void filling model of segregation.Comment: 6 pages, 10 figures (gif format), postscript version at http://physics.clarku.edu/~akudrolli/nls.htm

    Characterization of sulfur distribution in Ni-based superalloy and thermal barrier coatings after high temperature oxidation: a SIMS analysis

    Get PDF
    Sulfur segregation was characterized by secondary ion mass spectrometry (SIMS) in uncoated single-crystal Ni-based AM1 superalloys with various S contents and on NiPtAl, NiAl and NiPt bondcoats of complete TBC systems. In spite of technical difficulties associated with diffuse sputtered interfaces, an original sample preparation technique and a careful choice of analysis conditions enabled a chemical characterization of S distribution below metal/oxide interfaces. An initial heterogeneous distribution of S in as-received high S (3.2 ppmw) AM1 was measured. After oxidation, a S depletion profile formed, with a slope that depended on the initial bulk S content. GDMS measurements enabled a quantitative distribution of S in oxidized low S (0.14 ppmw) AM1 to be constructed and discussed in relation to equilibrium surface segregation of S on Ni. The quantity of S integrated in the thermally grown oxide (TGO) was estimated and found to be very similar to that measured from depletion found in the metal. Localized S enrichments in Pt-containing coatings are related to a possible beneficial trapping mechanism of Pt on the adherence of oxide scales

    Particle trapping and banding in rapid solidification

    Get PDF
    Solidification of suspensions of small particles, from nanometer to colloidal (sub-micrometer) sizes, produces biomimetic materials with novel microstructure and expanding applications in microfluidics, nanotechnology and tissue engineering. To facilitate understanding and control of the solidification process, a thermodynamically consistent theory is here developed. We use the Boltzmann particle velocity distribution to determine the probability a particle is engulfed by an advancing solid-liquid interface and obtain the resulting kinetic phase diagram. We demonstrate use of the theory by predicting the formation of bands in rapidly solidified alumina suspensions, in quantitative agreement with experiment
    corecore