647 research outputs found

    Efficient treatment and quantification of uncertainty in probabilistic seismic hazard and risk analysis

    Get PDF
    The main goals of this thesis are the development of a computationally efficient framework for stochastic treatment of various important uncertainties in probabilistic seismic hazard and risk assessment, its application to a newly created seismic risk model of Indonesia, and the analysis and quantification of the impact of these uncertainties on the distribution of estimated seismic losses for a large number of synthetic portfolios modeled after real-world counterparts. The treatment and quantification of uncertainty in probabilistic seismic hazard and risk analysis has already been identified as an area that could benefit from increased research attention. Furthermore, it has become evident that the lack of research considering the development and application of suitable sampling schemes to increase the computational efficiency of the stochastic simulation represents a bottleneck for applications where model runtime is an important factor. In this research study, the development and state of the art of probabilistic seismic hazard and risk analysis is first reviewed and opportunities for improved treatment of uncertainties are identified. A newly developed framework for the stochastic treatment of portfolio location uncertainty as well as ground motion and damage uncertainty is presented. The framework is then optimized with respect to computational efficiency. Amongst other techniques, a novel variance reduction scheme for portfolio location uncertainty is developed. Furthermore, in this thesis, some well-known variance reduction schemes such as Quasi Monte Carlo, Latin Hypercube Sampling and MISER (locally adaptive recursive stratified sampling) are applied for the first time to seismic hazard and risk assessment. The effectiveness and applicability of all used schemes is analyzed. Several chapters of this monograph describe the theory, implementation and some exemplary applications of the framework. To conduct these exemplary applications, a seismic hazard model for Indonesia was developed and used for the analysis and quantification of loss uncertainty for a large collection of synthetic portfolios. As part of this work, the new framework was integrated into a probabilistic seismic hazard and risk assessment software suite developed and used by Munich Reinsurance Group. Furthermore, those parts of the framework that deal with location and damage uncertainties are also used by the flood and storm natural catastrophe model development groups at Munich Reinsurance for their risk models

    Controlled stratification for quantile estimation

    Get PDF
    In this paper we propose and discuss variance reduction techniques for the estimation of quantiles of the output of a complex model with random input parameters. These techniques are based on the use of a reduced model, such as a metamodel or a response surface. The reduced model can be used as a control variate; or a rejection method can be implemented to sample the realizations of the input parameters in prescribed relevant strata; or the reduced model can be used to determine a good biased distribution of the input parameters for the implementation of an importance sampling strategy. The different strategies are analyzed and the asymptotic variances are computed, which shows the benefit of an adaptive controlled stratification method. This method is finally applied to a real example (computation of the peak cladding temperature during a large-break loss of coolant accident in a nuclear reactor).Comment: Published in at http://dx.doi.org/10.1214/08-AOAS186 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Uncertainty Assessment for PA Models

    Get PDF
    A mathematical model comprises input variables, output variables and equations relating these quantities. The input variables may vary within some ranges, reflecting either our incomplete knowledge about them (epistemic uncertainty) or their intrinsic variability (aleatory uncertainty). Moreover when solving numerically the equations of the model, numerical errors are also arising. The effects of such errors and variations of the inputs have to be quantified in order to asses the model¿s range of validity. The goal of uncertainty analysis is to asses the effects of parameter uncertainties on the uncertainties in computed results. The purpose of this report is to give an overview of the most useful probabilistic and statistic techniques and methods to characterize uncertainty propagation. Some examples of application of these techniques for PA applied to radioactive waste disposal are given.JRC.F.4-Safety of future nuclear reactor
    corecore