12 research outputs found

    Scoring Functions for Multivariate Distributions and Level Sets

    Get PDF
    Interest in predicting multivariate probability distributions is growing due to the increasing availability of rich datasets and computational developments. Scoring functions enable the comparison of forecast accuracy, and can potentially be used for estimation. A scoring function for multivariate distributions that has gained some popularity is the energy score. This is a generalization of the continuous ranked probability score (CRPS), which is widely used for univariate distributions. A little-known, alternative generalization is the multivariate CRPS (MCRPS). We propose a theoretical framework for scoring functions for multivariate distributions, which encompasses the energy score and MCRPS, as well as the quadratic score, which has also received little attention. We demonstrate how this framework can be used to generate new scores. For univariate distributions, it is well-established that the CRPS can be expressed as the integral over a quantile score. We show that, in a similar way, scoring functions for multivariate distributions can be "disintegrated" to obtain scoring functions for level sets. Using this, we present scoring functions for different types of level set, including those for densities and cumulative distributions. To compute the scoring functions, we propose a simple numerical algorithm. We illustrate our proposals using simulated and stock returns data

    Scores for Multivariate Distributions and Level Sets

    Get PDF
    Forecasts of multivariate probability distributions are required for a variety of applications. Scoring rules enable the evaluation of forecast accuracy and comparison between forecasting methods. We propose a theoretical framework for scoring rules for multivariate distributions that encompasses the existing quadratic score and multivariate continuous ranked probability score. We demonstrate how this framework can be used to generate new scoring rules. In some multivariate contexts, it is a forecast of a level set that is needed, such as a density level set for anomaly detection or the level set of the cumulative distribution as a measure of risk. This motivates consideration of scoring functions for such level sets. For univariate distributions, it is well established that the continuous ranked probability score can be expressed as the integral over a quantile score. We show that, in a similar way, scoring rules for multivariate distributions can be decomposed to obtain scoring functions for level sets. Using this, we present scoring functions for different types of level sets, including density level sets and level sets for cumulative distributions. To compute the scores, we propose a simple numerical algorithm. We perform a simulation study to support our proposals, and we use real data to illustrate usefulness for forecast combining and conditional value at risk estimation

    Scores for Multivariate Distributions and Level Sets

    Get PDF
    Forecasts of multivariate probability distributions are required for a variety of applications. Scoring rules enable the evaluation of forecast accuracy and comparison between forecasting methods. We propose a theoretical framework for scoring rules for multivariate distributions that encompasses the existing quadratic score and multivariate continuous ranked probability score. We demonstrate how this framework can be used to generate new scoring rules. In some multivariate contexts, it is a forecast of a level set that is needed, such as a density level set for anomaly detection or the level set of the cumulative distribution as a measure of risk. This motivates consideration of scoring functions for such level sets. For univariate distributions, it is well established that the continuous ranked probability score can be expressed as the integral over a quantile score. We show that, in a similar way, scoring rules for multivariate distributions can be decomposed to obtain scoring functions for level sets. Using this, we present scoring functions for different types of level sets, including density level sets and level sets for cumulative distributions. To compute the scores, we propose a simple numerical algorithm. We perform a simulation study to support our proposals, and we use real data to illustrate usefulness for forecast combining and conditional value at risk estimation

    Forecast combinations: an over 50-year review

    Full text link
    Forecast combinations have flourished remarkably in the forecasting community and, in recent years, have become part of the mainstream of forecasting research and activities. Combining multiple forecasts produced from single (target) series is now widely used to improve accuracy through the integration of information gleaned from different sources, thereby mitigating the risk of identifying a single "best" forecast. Combination schemes have evolved from simple combination methods without estimation, to sophisticated methods involving time-varying weights, nonlinear combinations, correlations among components, and cross-learning. They include combining point forecasts and combining probabilistic forecasts. This paper provides an up-to-date review of the extensive literature on forecast combinations, together with reference to available open-source software implementations. We discuss the potential and limitations of various methods and highlight how these ideas have developed over time. Some important issues concerning the utility of forecast combinations are also surveyed. Finally, we conclude with current research gaps and potential insights for future research
    corecore