3 research outputs found

    Evaluating the mixing performance in a planar passive micromixer with t-shape and SAR mixing chambers: comparative study

    Get PDF
    In Microfluidic devices have gained significant interest in various fields, including biomedical diagnostics, environmental preservation, animal epidemic avoidance, and food safety regulation. Micromixing phenomena are crucial for these devices' functionality, as they accurately and efficiently manipulate fluids within microchannels. The process aims to blend samples accurately and swiftly within these scaled-down devices, governed by the promotion of dispersion among distinct fluid species or particles. Advancements in passive and active micromixers have led to innovative designs incorporating diverse processes to enhance mixing efficiency. Examples include two-dimensional impediments, controlled imbalanced collisions, and complex configurations like spiral and convergence-divergence structures. Active micromixers use external cues to initiate and regulate mixing processes, including thermal, magnetic, sound, pressure, and electrical fields. The trajectory of micromixing technologies is significantly influenced by current developments in microfluidics. One notable advancement is the incorporation of micromixers into 3D printing methodologies, facilitating the development of adaptable microfluidic systems. Additionally, the incorporation of microfluidic principles into paper-based channels creates opportunities for the development of cost-effective and portable diagnostic devices. The process of micro-mixing is critical in boosting the functionalities of these devices.</p

    Frequency-controlled wireless passive microfluidic devices

    Get PDF
    Microfluidics is a promising technology that is increasingly attracting the attention of researchers due to its high efficiency and low-cost features. Micropumps, micromixers, and microvalves have been widely applied in various biomedical applications due to their compact size and precise dosage controllability. Nevertheless, despite the vast amount of research reported in this research area, the ability to implement these devices in portable and implantable applications is still limited. To date, such devices are constricted to the use of wires, or on-board power supplies, such as batteries. This thesis presents novel techniques that allow wireless control of passive microfluidic devices using an external radiofrequency magnetic field utilizing thermopneumatic principle. Three microfluidic devices are designed and developed to perform within the range of implantable drug-delivery devices. To demonstrate the wireless control of microfluidic devices, a wireless implantable thermopneumatic micropump is presented. Thermopneumatic pumping with a maximum flow rate of 2.86 μL/min is realized using a planar wirelessly-controlled passive inductor-capacitor heater. Then, this principle was extended in order to demonstrate the selective wireless control of multiple passive heaters. A passive wirelessly-controlled thermopneumatic zigzag micromixer is developed as a mean of a multiple drug delivery device. A maximum mixing efficiency of 96.1% is achieved by selectively activating two passive wireless planar inductor-capacitor heaters that have different resonant frequency values. To eliminate the heat associated with aforementioned wireless devices, a wireless piezoelectric normally-closed microvalve for drug delivery applications is developed. A piezoelectric diaphragm is operated wirelessly using the wireless power that is transferred from an external magnetic field. Valving is achieved with a percentage error as low as 3.11% in a 3 days long-term functionality test. The developed devices present a promising implementation of the reported wireless actuation principles in various portable and implantable biomedical applications, such as drug delivery, analytical assays, and cell lysis devices
    corecore