1,012 research outputs found
Nonlinear coupling of continuous variables at the single quantum level
We experimentally investigate nonlinear couplings between vibrational modes
of strings of cold ions stored in linear ion traps. The nonlinearity is caused
by the ions' Coulomb interaction and gives rise to a Kerr-type interaction
Hamiltonian H = n_r*n_s, where n_r,n_s are phonon number operators of two
interacting vibrational modes. We precisely measure the resulting oscillation
frequency shift and observe a collapse and revival of the contrast in a Ramsey
experiment. Implications for ion trap experiments aiming at high-fidelity
quantum gate operations are discussed
Deterministic single-photon source from a single ion
We realize a deterministic single-photon source from one and the same calcium
ion interacting with a high-finesse optical cavity. Photons are created in the
cavity with efficiency (88 +- 17)%, a tenfold improvement over previous
cavity-ion sources. Results of the second-order correlation function are
presented, demonstrating a high suppression of two-photon events limited only
by background counts. The cavity photon pulse shape is obtained, with good
agreement between experiment and simulation. Moreover, theoretical analysis of
the temporal evolution of the atomic populations provides relevant information
about the dynamics of the process and opens the way to future investigations of
a coherent atom-photon interface
High-fidelity ion-trap quantum computing with hyperfine clock states
We propose the implementation of a geometric-phase gate on
magnetic-field-insensitive qubits with -dependent forces for
trapped ion quantum computing. The force is exerted by two laser beams in a
Raman configuration. Qubit-state dependency is achieved by a small frequency
detuning from the virtually-excited state. Ion species with excited states of
long radiative lifetimes are used to reduce the chance of a spontaneous photon
emission to less than 10 per gate-run. This eliminates the main source
of gate infidelity of previous implementations. With this scheme it seems
possible to reach the fault tolerant threshold.Comment: 4 pages, 1 figur
Process tomography of ion trap quantum gates
A crucial building block for quantum information processing with trapped ions
is a controlled-NOT quantum gate. In this paper, two different sequences of
laser pulses implementing such a gate operation are analyzed using quantum
process tomography. Fidelities of up to 92.6(6)% are achieved for single gate
operations and up to 83.4(8)% for two concatenated gate operations. By process
tomography we assess the performance of the gates for different experimental
realizations and demonstrate the advantage of amplitude--shaped laser pulses
over simple square pulses. We also investigate whether the performance of
concatenated gates can be inferred from the analysis of the single gates
Robust entanglement
It is common belief among physicists that entangled states of quantum systems
loose their coherence rather quickly. The reason is that any interaction with
the environment which distinguishes between the entangled sub-systems collapses
the quantum state. Here we investigate entangled states of two trapped Ca
ions and observe robust entanglement lasting for more than 20 seconds
Measurement of the hyperfine structure of the S1/2-D5/2 transition in 43Ca+
The hyperfine structure of the S1/2-D5/2 quadrupole transition at 729 nm in
43Ca+ has been investigated by laser spectroscopy using a single trapped 43Ca+
ion. We determine the hyperfine structure constants of the metastable level as
A=-3.8931(2) MHz and B=-4.241(4) MHz. The isotope shift of the transition with
respect to 40Ca+ was measured to be 4134.713(5) MHz. We demonstrate the
existence of transitions that become independent of the first-order Zeeman
shift at non-zero low magnetic fields. These transitions might be better suited
for building a frequency standard than the well-known 'clock transitions'
between m=0 levels at zero magnetic field.Comment: corrected for sign errors in the hyperfine constants. No corrections
to were made to the data analysi
Heralded entanglement of two ions in an optical cavity
We demonstrate precise control of the coupling of each of two trapped ions to
the mode of an optical resonator. When both ions are coupled with near-maximum
strength, we generate ion--ion entanglement heralded by the detection of two
orthogonally polarized cavity photons. The entanglement fidelity with respect
to the Bell state reaches . This result
represents an important step toward distributed quantum computing with cavities
linking remote atom-based registers
Certifying experimental errors in quantum experiments
When experimental errors are ignored in an experiment, the subsequent
analysis of its results becomes questionable. We develop tests to detect
systematic errors in quantum experiments where only a finite amount of data is
recorded and apply these tests to tomographic data taken in an ion trap
experiment. We put particular emphasis on quantum state tomography and present
three detection methods: the first two employ linear inequalities while the
third is based on the generalized likelihood ratio.Comment: 4+ pages, 2 figures, 1 table, published versio
- …
