4 research outputs found

    Quality-aware segment transmission scheduling in peer-to-peer streaming systems

    Full text link

    Novel Techniques for Large-Scale and Cost-Effective Video Services

    Get PDF
    Despite the advance of network technologies in the past decade, providing video services to a large number of users remains a major technical challenge. This is especially true when it comes to serving high-definition videos. This thesis makes two contributions towards providing large-scale and cost-effective video services. 1) We consider the problem of periodic broadcast of popular videos in client/server video systems and present two novel techniques. Our research advances the state of the art with a segmentation rule that can generate a series of broadcast designs, among which we can choose the one that results in the smallest broadcast latency. We show that this rule allows us to design the broadcast technique that is the fastest up to date. 2) We then look at the problem of service scheduling in fully distributed peer-to-peer video systems, where a large number of hosts collaborate for the purpose of video sharing. Our proposed technique allows a client to be served by a server that is beyond its own file look up scope and can dynamically adjust client and server matches as new video requests arrive in the system. Our performance evaluation shows that these features dramatically improve the system performance to a large extent in terms of reducing service latency under a range of simulation settings

    PEER-TO-PEER 3D/MULTI-VIEW VIDEO STREAMING

    Get PDF
    Abstract The recent advances in stereoscopic video capture, compression and display have made 3D video a visually appealing and costly affordable technology. More sophisticated multi-view videos have also been demonstrated. Yet their remarkably increased data volume poses greater challenges to the conventional client/server systems. The stringent synchronization demands from different views further complicate the system design. In this thesis, we present an initial attempt toward efficient streaming of 3D videos over peer-to-peer networks. We show that the inherent multi-stream nature of 3D video makes playback synchronization more difficult. We address this by a 2-stream buffer, together with a novel segment scheduling. We further extend our system to support multi-view video with view diversity and dynamics. We have evaluated our system under different end-system and network configurations with typical stereo video streams. The simulation results demonstrate the superiority of our system in terms of scalability, streaming quality and dealing with view dynamics
    corecore