3 research outputs found

    Improved Hard Example Mining by Discovering Attribute-based Hard Person Identity

    Full text link
    In this paper, we propose Hard Person Identity Mining (HPIM) that attempts to refine the hard example mining to improve the exploration efficacy in person re-identification. It is motivated by following observation: the more attributes some people share, the more difficult to separate their identities. Based on this observation, we develop HPIM via a transferred attribute describer, a deep multi-attribute classifier trained from the source noisy person attribute datasets. We encode each image into the attribute probabilistic description in the target person re-ID dataset. Afterwards in the attribute code space, we consider each person as a distribution to generate his view-specific attribute codes in different practical scenarios. Hence we estimate the person-specific statistical moments from zeroth to higher order, which are further used to calculate the central moment discrepancies between persons. Such discrepancy is a ground to choose hard identity to organize proper mini-batches, without concerning the person representation changing in metric learning. It presents as a complementary tool of hard example mining, which helps to explore the global instead of the local hard example constraint in the mini-batch built by randomly sampled identities. Extensive experiments on two person re-identification benchmarks validated the effectiveness of our proposed algorithm

    \emph{cm}SalGAN: RGB-D Salient Object Detection with Cross-View Generative Adversarial Networks

    Full text link
    Image salient object detection (SOD) is an active research topic in computer vision and multimedia area. Fusing complementary information of RGB and depth has been demonstrated to be effective for image salient object detection which is known as RGB-D salient object detection problem. The main challenge for RGB-D salient object detection is how to exploit the salient cues of both intra-modality (RGB, depth) and cross-modality simultaneously which is known as cross-modality detection problem. In this paper, we tackle this challenge by designing a novel cross-modality Saliency Generative Adversarial Network (\emph{cm}SalGAN). \emph{cm}SalGAN aims to learn an optimal view-invariant and consistent pixel-level representation for RGB and depth images via a novel adversarial learning framework, which thus incorporates both information of intra-view and correlation information of cross-view images simultaneously for RGB-D saliency detection problem. To further improve the detection results, the attention mechanism and edge detection module are also incorporated into \emph{cm}SalGAN. The entire \emph{cm}SalGAN can be trained in an end-to-end manner by using the standard deep neural network framework. Experimental results show that \emph{cm}SalGAN achieves the new state-of-the-art RGB-D saliency detection performance on several benchmark datasets.Comment: Accepted by IEEE Transactions on Multimedi

    Tracking by Joint Local and Global Search: A Target-aware Attention based Approach

    Full text link
    Tracking-by-detection is a very popular framework for single object tracking which attempts to search the target object within a local search window for each frame. Although such local search mechanism works well on simple videos, however, it makes the trackers sensitive to extremely challenging scenarios, such as heavy occlusion and fast motion. In this paper, we propose a novel and general target-aware attention mechanism (termed TANet) and integrate it with tracking-by-detection framework to conduct joint local and global search for robust tracking. Specifically, we extract the features of target object patch and continuous video frames, then we concatenate and feed them into a decoder network to generate target-aware global attention maps. More importantly, we resort to adversarial training for better attention prediction. The appearance and motion discriminator networks are designed to ensure its consistency in spatial and temporal views. In the tracking procedure, we integrate the target-aware attention with multiple trackers by exploring candidate search regions for robust tracking. Extensive experiments on both short-term and long-term tracking benchmark datasets all validated the effectiveness of our algorithm. The project page of this paper can be found at \url{https://sites.google.com/view/globalattentiontracking/home/extend}.Comment: Accepted by IEEE TNNLS 202
    corecore