9 research outputs found

    Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment

    Full text link
    Understanding mobile traffic patterns of large scale cellular towers in urban environment is extremely valuable for Internet service providers, mobile users, and government managers of modern metropolis. This paper aims at extracting and modeling the traffic patterns of large scale towers deployed in a metropolitan city. To achieve this goal, we need to address several challenges, including lack of appropriate tools for processing large scale traffic measurement data, unknown traffic patterns, as well as handling complicated factors of urban ecology and human behaviors that affect traffic patterns. Our core contribution is a powerful model which combines three dimensional information (time, locations of towers, and traffic frequency spectrum) to extract and model the traffic patterns of thousands of cellular towers. Our empirical analysis reveals the following important observations. First, only five basic time-domain traffic patterns exist among the 9,600 cellular towers. Second, each of the extracted traffic pattern maps to one type of geographical locations related to urban ecology, including residential area, business district, transport, entertainment, and comprehensive area. Third, our frequency-domain traffic spectrum analysis suggests that the traffic of any tower among the 9,600 can be constructed using a linear combination of four primary components corresponding to human activity behaviors. We believe that the proposed traffic patterns extraction and modeling methodology, combined with the empirical analysis on the mobile traffic, pave the way toward a deep understanding of the traffic patterns of large scale cellular towers in modern metropolis.Comment: To appear at IMC 201

    Energy-aware video streaming on smartphones

    Full text link
    Abstract—Video streaming on smartphone consumes lots of energy. One common solution is to download and buffer future video data for playback so that the wireless interface can be turned off most of time and then save energy. However, this may waste energy and bandwidth if the user skips or quits before the end of the video. Using a small buffer can reduce the bandwidth wastage, but may consume more energy and introduce rebuffering delay. In this paper, we analyze the power consumption during video streaming considering user skip and early quit scenarios. We first propose an offline method to compute the minimum power consumption, and then introduce an online solution to save energy based on whether the user tends to watch video for a long time or tends to skip. We have implemented the online solution on Android based smartphones. Experimental results and trace-driven simulation results show that that our method can save energy while achieving a better tradeoff between delay and bandwidth compared to existing methods. I

    Quality-aware traffic offloading in wireless networks

    No full text

    Quality-Aware Traffic Offloading in Wireless Networks

    No full text
    corecore