7,550 research outputs found

    Multiservice QoS-Enabled MAC for Optical Burst Switching

    Get PDF
    The emergence of a broad range of network-driven applications (e.g., multimedia, online gaming) brings in the need for a network environment able to provide multiservice capabilities with diverse quality-of-service (QoS) guarantees. In this paper, a medium access control protocol is proposed to support multiple services and QoS levels in optical burst-switched mesh networks without wavelength conversion. The protocol provides two different access mechanisms, queue-arbitrated and prearbitrated for connectionless and connection-oriented burst transport, respectively. It has been evaluated through extensive simulations and its simplistic form makes it very promising for implementation and deployment. Results indicate that the protocol can clearly provide a relative quality differentiation for connectionless traffic and guarantee null (or negligible, and thus acceptable) burst loss probability for a wide range of network (or offered) load while ensuring low access delay for the higher-priority traffic. Furthermore, in the multiservice scenario mixing connectionless and connection-oriented burst transmissions, three different prearbitrated slot scheduling algorithms are evaluated, each one providing a different performance in terms of connection blocking probability. The overall results demonstrate the suitability of this architecture for future integrated multiservice optical networks

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    Impact of topology on layer 2 switched QoS sensitive services

    Get PDF
    High-bandwidth QoS sensitive services such as large scale video surveillance generally depend on provisioned capacity delivered by circuit-switched technology such as SONET/SDH. Yet development in layer 2 protocol sets and manageability extensions to Ethernet standards propose layer 2 packet switching technology as a viable, cheaper alternative to SONET/SDH. Layer 2 switched networks traditionally offer more complex topologies; in this paper we explain general QoS issues with layer 2 switching and show the impact of topology choice on service performance

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Node design in optical packet switched networks

    Get PDF

    Synchronization of a WDM Packet-Switched Slotted Ring

    Get PDF
    In this paper, we present two different strategies of slot synchronization in wavelength-division-multiplexing (WDM) packet-switched slotted-ring networks. Emphasis is given to the architecture behind the WDM Optical Network Demonstrator over Rings (WONDER) project, which is based on tunable transmitters and fixed receivers. The WONDER experimental prototype is currently being developed at the laboratories of Politecnico di Torino. In the former strategy, a slotsynchronization signal is transmitted by the master station on a dedicated control wavelength; in the latter, slave nodes achieve slot synchronization aligning on data packets that are received from the master. The performance of both synchronization strategies, particularly in terms of packet-collision probability, was evaluated by simulation. The technique based on transmitting a timing signal on a dedicated control wavelength achieves better performance, although it is more expensive due to the need for an additional wavelength. However, the technique based on aligning data packets that are received from the master, despite attaining lower timing stability, still deserves further study, particularly if limiting the number of wavelengths and receivers is a major requirement. Some experimental results, which were measured on the WONDER prototype, are also shown. Measurement results, together with theoretical findings, demonstrate the good synchronization performance of the prototype
    corecore