1,611,847 research outputs found

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Research Article Software Component Selection Based on Quality Criteria Using the Analytic Network Process

    Get PDF
    Component based software development (CBSD) endeavors to deliver cost-effective and quality software systems through the selection and integration of commercially available software components. CBSD emphasizes the design and development of software systems using preexisting components. Software component reusability is an indispensable part of component based software development life cycle (CBSDLC),which consumes a significant amount of organization’s resources, that is, time and effort. It is convenient in component based software system (CBSS) to select the most suitable and appropriate software components that provide all the required functionalities. Selecting the most appropriate components is crucial for the success of the entire system. However, decisions regarding software component reusability are often made in an ad hoc manner, which ultimately results in schedule delay and lowers the entire quality system. In this paper, we have discussed the analytic network process (ANP) method for software component selection. The methodology is explained and assessed using a real life case study

    Software systems through complex networks science: Review, analysis and applications

    Full text link
    Complex software systems are among most sophisticated human-made systems, yet only little is known about the actual structure of 'good' software. We here study different software systems developed in Java from the perspective of network science. The study reveals that network theory can provide a prominent set of techniques for the exploratory analysis of large complex software system. We further identify several applications in software engineering, and propose different network-based quality indicators that address software design, efficiency, reusability, vulnerability, controllability and other. We also highlight various interesting findings, e.g., software systems are highly vulnerable to processes like bug propagation, however, they are not easily controllable

    Model-driven performance evaluation for service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluation of services and service compositions in the context of model-driven service engineering. Temporal databases theory is utilised for the empirical performance evaluation of model-driven developed service systems

    A methodological proposal and tool support for the HL7 standards compliance in the development of health information systems

    Get PDF
    Health information systems are increasingly complex, and their development is presented as a challenge for software development companies offering quality, maintainable and interoperable products. HL7 (Health level 7) International, an international non-profit organization, defines and maintains standards related to health information systems. However, the modelling languages proposed by HL7 are far removed from standard languages and widely known by software engineers. In these lines, NDT is a software development methodology that has a support tool called NDT-Suite and is based, on the one hand, on the paradigm of model-driven engineering and, on the other hand, in UML that is a widely recognized standard language. This paper proposes an extension of the NDT methodology called MoDHE (Model Driven Health Engineering) to offer software engineers a methodology capable of modelling health information systems conforming to HL7 using UML domain models
    corecore