8,536 research outputs found

    Investigating mycotoxins and secondary metabolites in Canadian agricultural commodities using high-resolution mass spectrometry

    Get PDF
    Mycotoxins are secondary metabolites produced by fungi, which are harmful to humans and/or animals. Alternaria is a common fungal plant pathogen that can produce mycotoxins in agricultural commodities, such as processed wheat products, and fruit juices. Liquid chromatography mass spectrometry (LC-MS) is commonly used for the detection, characterization and quantitation of mycotoxins in agricultural products. Canadian Alternaria species were assessed to provide a risk assessment of their secondary metabolites in agricultural products by describing their global metabolome data obtained from the Orbitrap LC-MS instrument. Combination of this high mass accuracy data with post data-acquisition analysis techniques resulted in the discovery of new conjugated mycotoxins and secondary metabolites produced by Canadian species of Alternaria. Data independent acquisition-digital archiving (DIA-DA) was applied as a non-targeted approach for metabolomic profiling of naturally-contaminated silage. DIA-DA allowed for high quality retrospective sample analysis of high resolution LC-MS data with high analyte selectivity

    Toward a Standardized Strategy of Clinical Metabolomics for the Advancement of Precision Medicine

    Get PDF
    Despite the tremendous success, pitfalls have been observed in every step of a clinical metabolomics workflow, which impedes the internal validity of the study. Furthermore, the demand for logistics, instrumentations, and computational resources for metabolic phenotyping studies has far exceeded our expectations. In this conceptual review, we will cover inclusive barriers of a metabolomics-based clinical study and suggest potential solutions in the hope of enhancing study robustness, usability, and transferability. The importance of quality assurance and quality control procedures is discussed, followed by a practical rule containing five phases, including two additional "pre-pre-" and "post-post-" analytical steps. Besides, we will elucidate the potential involvement of machine learning and demonstrate that the need for automated data mining algorithms to improve the quality of future research is undeniable. Consequently, we propose a comprehensive metabolomics framework, along with an appropriate checklist refined from current guidelines and our previously published assessment, in the attempt to accurately translate achievements in metabolomics into clinical and epidemiological research. Furthermore, the integration of multifaceted multi-omics approaches with metabolomics as the pillar member is in urgent need. When combining with other social or nutritional factors, we can gather complete omics profiles for a particular disease. Our discussion reflects the current obstacles and potential solutions toward the progressing trend of utilizing metabolomics in clinical research to create the next-generation healthcare system.11Ysciescopu

    Protective Activity of Broccoli Sprout Juice in a Human Intestinal Cell Model of Gut Inflammation

    Get PDF
    Benefits to health from a high consumption of fruits and vegetables are well established and have been attributed to bioactive secondary metabolites present in edible plants. However, the effects of specific health-related phytochemicals within a complex food matrix are difficult to assess. In an attempt to address this problem, we have used elicitation to improve the nutraceutical content of seedlings of Brassica oleracea grown under controlled conditions. Analysis, by LC-MS, of the glucosinolate, isothiocyanate and phenolic compound content of juices obtained from sprouts indicated that elicitation induces an enrichment of several phenolics, particularly of the anthocyanin fraction. To test the biological activity of basal and enriched juices we took advantage of a recently developed in vitro model of inflamed human intestinal epithelium. Both sproutsā€™ juices protected intestinal barrier integrity in Caco-2 cells exposed to tumor necrosis factor under marginal zinc deprivation, with the enriched juice showing higher protection. Multivariate regression analysis indicated that the extent of rescue from stress-induced epithelial dysfunction correlated with the composition in bioactive molecules of the juices and, in particular, with a group of phenolic compounds, including several anthocyanins, quercetin-3-Glc, cryptochlorogenic, neochlorogenic and cinnamic acids

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resourcesā€”in the form of tools, software, and databasesā€”is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table

    Incorporating peak grouping information for alignment of multiple liquid chromatography-mass spectrometry datasets

    Get PDF
    Motivation: The combination of liquid chromatography and mass spectrometry (LC/MS) has been widely used for large-scale comparative studies in systems biology, including proteomics, glycomics and metabolomics. In almost all experimental design, it is necessary to compare chromatograms across biological or technical replicates and across sample groups. Central to this is the peak alignment step, which is one of the most important but challenging preprocessing steps. Existing alignment tools do not take into account the structural dependencies between related peaks that co-elute and are derived from the same metabolite or peptide. We propose a direct matching peak alignment method for LC/MS data that incorporates related peaks information (within each LC/MS run) and investigate its effect on alignment performance (across runs). The groupings of related peaks necessary for our method can be obtained from any peak clustering method and are built into a pairwise peak similarity score function. The similarity score matrix produced is used by an approximation algorithm for the weighted matching problem to produce the actual alignment result.<p></p> Results: We demonstrate that related peak information can improve alignment performance. The performance is evaluated on a set of benchmark datasets, where our method performs competitively compared to other popular alignment tools.<p></p> Availability: The proposed alignment method has been implemented as a stand-alone application in Python, available for download at http://github.com/joewandy/peak-grouping-alignment.<p></p&gt

    Metabolomics-based biomarker discovery for bee health monitoring : a proof of concept study concerning nutritional stress in Bombus terrestris

    Get PDF
    Bee pollinators are exposed to multiple natural and anthropogenic stressors. Understanding the effects of a single stressor in the complex environmental context of antagonistic/synergistic interactions is critical to pollinator monitoring and may serve as early warning system before a pollination crisis. This study aimed to methodically improve the diagnosis of bee stressors using a simultaneous untargeted and targeted metabolomics-based approach. Analysis of 84 Bombus terrestris hemolymph samples found 8 metabolites retained as potential biomarkers that showed excellent discrimination for nutritional stress. In parallel, 8 significantly altered metabolites, as revealed by targeted profiling, were also assigned as candidate biomarkers. Furthermore, machine learning algorithms were applied to the above-described two biomarker sets, whereby the untargeted eight components showed the best classification performance with sensitivity and specificity up to 99% and 100%, respectively. Based on pathway and biochemistry analysis, we propose that gluconeogenesis contributed significantly to blood sugar stability in bumblebees maintained on a low carbohydrate diet. Taken together, this study demonstrates that metabolomics-based biomarker discovery holds promising potential for improving bee health monitoring and to identify stressor related to energy intake and other environmental stressors

    Salivary biomarker development using genomic, proteomic and metabolomic approaches.

    Get PDF
    The use of saliva as a diagnostic sample provides a non-invasive, cost-efficient method of sample collection for disease screening without the need for highly trained professionals. Saliva collection is far more practical and safe compared with invasive methods of sample collection, because of the infection risk from contaminated needles during, for example, blood sampling. Furthermore, the use of saliva could increase the availability of accurate diagnostics for remote and impoverished regions. However, the development of salivary diagnostics has required technical innovation to allow stabilization and detection of analytes in the complex molecular mixture that is saliva. The recent development of cost-effective room temperature analyte stabilization methods, nucleic acid pre-amplification techniques and direct saliva transcriptomic analysis have allowed accurate detection and quantification of transcripts found in saliva. Novel protein stabilization methods have also facilitated improved proteomic analyses. Although candidate biomarkers have been discovered using epigenetic, transcriptomic, proteomic and metabolomic approaches, transcriptomic analyses have so far achieved the most progress in terms of sensitivity and specificity, and progress towards clinical implementation. Here, we review recent developments in salivary diagnostics that have been accomplished using genomic, transcriptomic, proteomic and metabolomic approaches
    • ā€¦
    corecore