9,963 research outputs found

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    On Quantifying Qualitative Geospatial Data: A Probabilistic Approach

    Full text link
    Living in the era of data deluge, we have witnessed a web content explosion, largely due to the massive availability of User-Generated Content (UGC). In this work, we specifically consider the problem of geospatial information extraction and representation, where one can exploit diverse sources of information (such as image and audio data, text data, etc), going beyond traditional volunteered geographic information. Our ambition is to include available narrative information in an effort to better explain geospatial relationships: with spatial reasoning being a basic form of human cognition, narratives expressing such experiences typically contain qualitative spatial data, i.e., spatial objects and spatial relationships. To this end, we formulate a quantitative approach for the representation of qualitative spatial relations extracted from UGC in the form of texts. The proposed method quantifies such relations based on multiple text observations. Such observations provide distance and orientation features which are utilized by a greedy Expectation Maximization-based (EM) algorithm to infer a probability distribution over predefined spatial relationships; the latter represent the quantified relationships under user-defined probabilistic assumptions. We evaluate the applicability and quality of the proposed approach using real UGC data originating from an actual travel blog text corpus. To verify the quality of the result, we generate grid-based maps visualizing the spatial extent of the various relations

    Spatial database implementation of fuzzy region connection calculus for analysing the relationship of diseases

    Full text link
    Analyzing huge amounts of spatial data plays an important role in many emerging analysis and decision-making domains such as healthcare, urban planning, agriculture and so on. For extracting meaningful knowledge from geographical data, the relationships between spatial data objects need to be analyzed. An important class of such relationships are topological relations like the connectedness or overlap between regions. While real-world geographical regions such as lakes or forests do not have exact boundaries and are fuzzy, most of the existing analysis methods neglect this inherent feature of topological relations. In this paper, we propose a method for handling the topological relations in spatial databases based on fuzzy region connection calculus (RCC). The proposed method is implemented in PostGIS spatial database and evaluated in analyzing the relationship of diseases as an important application domain. We also used our fuzzy RCC implementation for fuzzification of the skyline operator in spatial databases. The results of the evaluation show that our method provides a more realistic view of spatial relationships and gives more flexibility to the data analyst to extract meaningful and accurate results in comparison with the existing methods.Comment: ICEE201

    Topological Schemas of Memory Spaces

    Full text link
    Hippocampal cognitive map---a neuronal representation of the spatial environment---is broadly discussed in the computational neuroscience literature for decades. More recent studies point out that hippocampus plays a major role in producing yet another cognitive framework that incorporates not only spatial, but also nonspatial memories---the memory space. However, unlike cognitive maps, memory spaces have been barely studied from a theoretical perspective. Here we propose an approach for modeling hippocampal memory spaces as an epiphenomenon of neuronal spiking activity. First, we suggest that the memory space may be viewed as a finite topological space---a hypothesis that allows treating both spatial and nonspatial aspects of hippocampal function on equal footing. We then model the topological properties of the memory space to demonstrate that this concept naturally incorporates the notion of a cognitive map. Lastly, we suggest a formal description of the memory consolidation process and point out a connection between the proposed model of the memory spaces to the so-called Morris' schemas, which emerge as the most compact representation of the memory structure.Comment: 24 pages, 8 Figures, 1 Suppl. Figur

    Voronoi-Based Region Approximation for Geographical Information Retrieval with Gazetteers

    No full text
    Gazetteers and geographical thesauri can be regarded as parsimonious spatial models that associate geographical location with place names and encode some semantic relations between the names. They are of particular value in processing information retrieval requests in which the user employs place names to specify geographical context. Typically the geometric locational data in a gazetteer are confined to a simple footprint in the form of a centroid or a minimum bounding rectangle, both of which can be used to link to a map but are of limited value in determining spatial relationships. Here we describe a Voronoi diagram method for generating approximate regional extents from sets of centroids that are respectively inside and external to a region. The resulting approximations provide measures of areal extent and can be used to assist in answering geographical queries by evaluating spatial relationships such as distance, direction and common boundary length. Preliminary experimental evaluations of the method have been performed in the context of a semantic modelling system that combines the centroid data with hierarchical and adjacency relations between the associated place names
    • …
    corecore