2 research outputs found

    A Dynamic Knowledge Model of Project Time-Cost Analysis Based on Trend Modelling

    Get PDF
    This paper investigates the application of trend quantifiers of project time-cost analysis as a tool for decision-making support in the project management. Practical project management-related problems are solved under information shortages. It means that methods of statistical analysis cannot be easily used as they are based on the law of large numbers of observations. Numbers are information intensive quantifiers. The least information intensive quantifier is a trend; its values are increasing, constant, decreasing. If a derivative cannot be quantified by a trend, then nothing is known and therefore nothing can be analyzed/predicted. For this reason, the trend model M was created. The model M is based on a degraded set of differential equations or heuristics. A trend analysis of the model M is an evaluation of the relevant discrete set of solutions/scenarios S. A trend reconstruction is an evaluation of the model M if a (sub)set of scenarios S is given. The paper studies linear reconstruction, i.e. the model M is a set of linear differential equations. The trend reconstruction is partially reverse process to trend analysis. A case study has 7 variables (e.g. Project duration, Direct personnel costs, Indirect personal costs etc.) and the reconstructed set of linear differential equations has 7 equations. The set of 243 scenarios is obtained if this reconstructed set of trend linear equations is solved. Any future or past behavior of the model M can be described by a sequence of obtained scenarios

    Qualitative and Quantitative Integrated Modeling for Stochastic Simulation and Optimization

    No full text
    The simulation and optimization of an actual physics system are usually constructed based on the stochastic models, which have both qualitative and quantitative characteristics inherently. Most modeling specifications and frameworks find it difficult to describe the qualitative model directly. In order to deal with the expert knowledge, uncertain reasoning, and other qualitative information, a qualitative and quantitative combined modeling specification was proposed based on a hierarchical model structure framework. The new modeling approach is based on a hierarchical model structure which includes the meta-meta model, the meta-model and the high-level model. A description logic system is defined for formal definition and verification of the new modeling specification. A stochastic defense simulation was developed to illustrate how to model the system and optimize the result. The result shows that the proposed method can describe the complex system more comprehensively, and the survival probability of the target is higher by introducing qualitative models into quantitative simulation
    corecore