4 research outputs found

    Qualitative Order of Magnitude Energy-Flow-Based Failure Modes and Effects Analysis

    No full text
    This paper presents a structured power and energy-flow-based qualitative modelling approach that is applicable to a variety of system types including electrical and fluid flow. The modelling is split into two parts. Power flow is a global phenomenon and is therefore naturally represented and analysed by a network comprised of the relevant structural elements from the components of a system. The power flow analysis is a platform for higher-level behaviour prediction of energy related aspects using local component behaviour models to capture a state-based representation with a global time. The primary application is Failure Modes and Effects Analysis (FMEA) and a form of exaggeration reasoning is used, combined with an order of magnitude representation to derive the worst case failure modes. The novel aspects of the work are an order of magnitude(OM) qualitative network analyser to represent any power domain and topology, including multiple power sources, a feature that was not required for earlier specialised electrical versions of the approach. Secondly, the representation of generalised energy related behaviour as state-based local models is presented as a modelling strategy that can be more vivid and intuitive for a range of topologically complex applications than qualitative equation-based representations. The two-level modelling strategy allows the broad system behaviour coverage of qualitative simulation to be exploited for the FMEA task, while limiting the difficulties of qualitative ambiguity explanation that can arise from abstracted numerical models. We have used the method to support an automated FMEA system with examples of an aircraft fuel system and domestic a heating system discussed in this paper. 1

    Qualitative Order of Magnitude Energy-Flow-Based Failure Modes and Effects Analysis

    No full text

    A framework for aerospace vehicle reasoning (FAVER)

    Get PDF
    Airliners spend over 9% of their total revenue in Maintenance, Repair, and Overhaul (MRO) and working to bring down the cost and time involved. The prime focus is on unexpected downtime and extended maintenance leading to delays in the flights, which also reduces the trustworthiness of the airliners among the customers. One of the effective solutions to address this issue is Condition based Maintenance (CBM), in which the aircraft systems are monitored frequently, and maintenance plans are customized to suit the health of these systems. Integrated Vehicle Health Management (IVHM) is a capability enabling CBM by assessing the current condition of the aircraft at component/ Line Replaceable Unit/ system levels and providing diagnosis and remaining useful life calculations required for CBM. However, there is a lack of focus on vehicle level health monitoring in IVHM, which is vital to identify fault propagation between the systems, owing to their part in the complicated troubleshooting process resulting in prolonged maintenance. This research addresses this issue by proposing a Framework for Aerospace Vehicle Reasoning, shortly called FAVER. FAVER is developed to enable isolation and root cause identification of faults propagating between multiple systems at the aircraft level. This is done by involving Digital Twins (DTs) of aircraft systems in order to emulate interactions between these systems and Reasoning to assess health information to isolate cascading faults. FAVER currently uses four aircraft systems: i) the Electrical Power System, ii) the Fuel System, iii) the Engine, and iv) the Environmental Control System, to demonstrate its ability to provide high level reasoning, which can be used for troubleshooting in practice. FAVER is also demonstrated for its ability to expand, update, and scale for accommodating new aircraft systems into the framework along with its flexibility. FAVER’s reasoning ability is also evaluated by testing various use cases.Transport System
    corecore