9 research outputs found

    Trajectory Generation Using Semidefinite Programming For Multi-Rotors

    Get PDF

    Robust Adaptive Output Tracking for Quadrotor Helicopters

    Get PDF
    Quadrotor helicopters are drawing considerable attention both for their mobility and their potential to perform multiple tasks in complete autonomy. Moreover, the numerous limitations characterizing these aircraft, such as their underactuation, make quadrotors ideal testbeds for innovative theoretical approaches to the problem of controlling autonomous mechanical systems. In this chapter, we propose a robust model reference adaptive control architecture and design an autopilot for quadrotors, which guarantees satisfactory output tracking despite uncertainties in the vehicle’s mass, matrix of inertia, and location of the center of mass. The feasibility of our results is supported by a detailed analysis of the quadrotor’s equations of motion. Specifically, considering the vehicle’s equations of motion as a time-varying nonlinear dynamical system and avoiding the common assumption that the vehicle’s Euler angles are small at all times, we prove that the proposed autopilot guarantees satisfactory output tracking and verifies sufficient conditions for a weak form of controllability of the closed-loop system known as strong accessibility. A numerical example illustrates the applicability of the theoretical results presented and clearly shows how the proposed autopilot outperforms in strong wind conditions autopilots designed using a commonly employed proportional-derivative control law and a conventional model reference adaptive control law

    Safe navigation and motion coordination control strategies for unmanned aerial vehicles

    Full text link
    Unmanned aerial vehicles (UAVs) have become very popular for many military and civilian applications including in agriculture, construction, mining, environmental monitoring, etc. A desirable feature for UAVs is the ability to navigate and perform tasks autonomously with least human interaction. This is a very challenging problem due to several factors such as the high complexity of UAV applications, operation in harsh environments, limited payload and onboard computing power and highly nonlinear dynamics. Therefore, more research is still needed towards developing advanced reliable control strategies for UAVs to enable safe navigation in unknown and dynamic environments. This problem is even more challenging for multi-UAV systems where it is more efficient to utilize information shared among the networked vehicles. Therefore, the work presented in this thesis contributes towards the state-of-the-art in UAV control for safe autonomous navigation and motion coordination of multi-UAV systems. The first part of this thesis deals with single-UAV systems. Initially, a hybrid navigation framework is developed for autonomous mobile robots using a general 2D nonholonomic unicycle model that can be applied to different types of UAVs, ground vehicles and underwater vehicles considering only lateral motion. Then, the more complex problem of three-dimensional (3D) collision-free navigation in unknown/dynamic environments is addressed. To that end, advanced 3D reactive control strategies are developed adopting the sense-and-avoid paradigm to produce quick reactions around obstacles. A special case of navigation in 3D unknown confined environments (i.e. tunnel-like) is also addressed. General 3D kinematic models are considered in the design which makes these methods applicable to different UAV types in addition to underwater vehicles. Moreover, different implementation methods for these strategies with quadrotor-type UAVs are also investigated considering UAV dynamics in the control design. Practical experiments and simulations were carried out to analyze the performance of the developed methods. The second part of this thesis addresses safe navigation for multi-UAV systems. Distributed motion coordination methods of multi-UAV systems for flocking and 3D area coverage are developed. These methods offer good computational cost for large-scale systems. Simulations were performed to verify the performance of these methods considering systems with different sizes
    corecore