882 research outputs found

    An efficient quantum memory in 167Er3+:Y2SiO5

    Get PDF
    This thesis investigates whether a quantum memory suitable for quantum communication applications can be developed using an erbium doped crystal. To assess the potential of the storage material, 167Er3+:Y2SiO5, the performance of two quantum memory protocols are characterised, the Atomic Frequency Comb (AFC) and Rephased Amplified Spontaneous Emission (RASE). As such, this work is a spiritual successor to two previous PhD projects, Kate Ferguson's non-classical demonstration of the RASE protocol using praseodymium, and Milos Rancic's high resolution spectroscopy and demonstration of long hyperfine coherence times in erbium. A telecom compatible quantum memory is vital for the DLCZ quantum repeater protocol, a critical device for quantum communications networks. A quantum memory designed for communications networks will need to meet several requirements: operate in the fibre optic telecommunications band, high recall efficiency, long storage time, and high bandwidth. Erbium is of interest as it has an optical transition within the telecommunications C-band (1530-1565 nm) and Rancic's thesis demonstrated the hyperfine coherence time needed for long storage times, 1.3 s. However, efficient quantum memories using erbium have not been demonstrated to date. This thesis will present an efficient quantum memory using erbium and discuss a pathway to demonstrate all the above criteria simultaneously. Techniques that were developed in Rancic's thesis are expanded in this thesis to create a new memory preparation process. The preparation process uses the long hyperfine lifetimes and large hyperfine splittings found in 167Er3+:Y2SiO5. Using this preparation, two quantum memory protocols were demonstrated, the Atomic Frequency Comb (AFC) and Rephased Amplified Spontaneous Emission (RASE), from Ferguson's thesis. In the AFC experiments, non-classical storage was demonstrated with a delay time of 0.66 us, an efficiency of 22%, and a bandwidth of 6 MHz. In the RASE experiments, an efficiency of 47% was demonstrated with a spin-state storage time of 27 us, and the potential to store 40 temporal modes. The initial results have shown orders of magnitude increases in storage times and efficiency over previous erbium memories. However, the efficiencies shown are not high enough for a quantum repeater demonstration. Cavity-enhancement offers a way to increase the efficiencies of both the AFC and RASE demonstrations. In the AFC chapter, cavity enhancement was discussed as a way to increase the efficiency, theoretically, to 96.6% with a 100 MHz bandwidth. These predicted efficiencies and bandwidths, using erbium, would meet three of the requirements needed for applications in a communications network, while Rancic has already demonstrated the remaining requirement in the same material. The next step for this work will be to realise the predicted efficiency and bandwidth, and then implement hyperfine rephasing for long storage times. In summary, this thesis expands on the works of Ferguson and Rancic to demonstrate quantum memories based in erbium. The demonstrations are promising so far, and proposed improvements to the experiment suggest that a quantum memory fit for quantum networks applications is possible. Furthermore, a pathway to an improved quantum memory is presented. Such a memory could be used in an initial quantum repeater demonstration

    Advances in performance and automation of a single ytterbium ion optical clock

    Get PDF
    While the SI second is currently defined in terms of a microwave transition frequency in caesium, atomic clocks based on an optical transition are currently outperforming caesium clocks by up to two orders of magnitude. In order to fully exploit the potential accuracy achievable by optical clocks, the SI second needs to be redefined in terms of an optical frequency standard. The ¹⁷¹Yb⁺ ion is an excellent candidate thanks to the extremely narrow linewidth of its electric octupole (E3) transition and its particular insensitivity to external perturbations. This thesis is focused on the ytterbium ion optical clock at the National Physical Laboratory (NPL), consisting of a single ¹⁷¹Yb⁺ ion trapped in a radio frequency (RF) Paul trap and probed by ultrastable 467-nm light to excite the E3 transition. Improved measurement methods were developed for the evaluation of several systematic frequency shifts. In particular, the electric quadrupole shift, which used to be the leading source of uncertainty, can now be directly measured with an accuracy in the low parts in 10¹⁸. A great focus was put on the automation of several aspects of the experiment. Because all optical clocks generally require a lot of maintenance and attention during their operation, many experimental routines were automated in order to minimise the requirement for human intervention. Furthermore, the analysis of almost all systematic shifts was automated, requiring minimal manual input so that shifts could be evaluated on the fly. Finally, a generalised framework was developed for the automatic evaluation of the absolute frequency of the optical clock via the International Atomic Time (TAI). In order to increase the confidence in the level of performance of the ytterbium ion optical clock, international clock comparison campaigns are regularly carried out. Between 2019 and 2022, several results were produced: two absolute frequency measurements via TAI with an uncertainty at the 1 × 10⁻¹⁵ level; two local frequency ratio measurements between ¹⁷¹Yb⁺ (E3) and ⁸⁷Sr with an uncertainty in the low parts in 10¹⁷; three uncertainty budgets at the parts in 10¹⁸ level; and one measurement of the ratio of the octupole and quadrupole optical clock transitions in ¹⁷¹Yb⁺ with an uncertainty of 1.5 × 10⁻¹⁶. All of these results are shown to be consistent with each other and in good agreement with the literature. Furthermore, a prototype optically-steered time scale was successfully demonstrated for the first time at NPL with the contribution of both the ¹⁷¹Yb⁺ and ⁸⁷Sr optical clocks.Open Acces

    SuperCDMS HVeV Run 2 Low-Mass Dark Matter Search, Highly Multiplexed Phonon-Mediated Particle Detector with Kinetic Inductance Detector, and the Blackbody Radiation in Cryogenic Experiments

    Get PDF
    There is ample evidence of dark matter (DM), a phenomenon responsible for ≈ 85% of the matter content of the Universe that cannot be explained by the Standard Model (SM). One of the most compelling hypotheses is that DM consists of beyond-SM particle(s) that are nonluminous and nonbaryonic. So far, numerous efforts have been made to search for particle DM, and yet none has yielded an unambiguous observation of DM particles. We present in Chapter 2 the SuperCDMS HVeV Run 2 experiment, where we search for DM in the mass ranges of 0.5--10⁴ MeV/c² for the electron-recoil DM and 1.2--50 eV/c² for the dark photon and the Axion-like particle (ALP). SuperCDMS utilizes cryogenic crystals as detectors to search for DM interaction with the crystal atoms. The interaction is detected in the form of recoil energy mediated by phonons. In the HVeV project, we look for electron recoil, where we enhance the signal by the Neganov-Trofimov-Luke effect under high-voltage biases. The technique enabled us to detect quantized e⁻h⁺ creation at a 3% ionization energy resolution. Our work is the first DM search analysis considering charge trapping and impact ionization effects for solid-state detectors. We report our results as upper limits for the assumed particle models as functions of DM mass. Our results exclude the DM-electron scattering cross section, the dark photon kinetic mixing parameter, and the ALP axioelectric coupling above 8.4 x 10⁻³⁴ cm², 3.3 x 10⁻¹⁴, and 1.0 x 10⁻⁹, respectively. Currently every SuperCDMS detector is equipped with a few phonon sensors based on the transition-edge sensor (TES) technology. In order to improve phonon-mediated particle detectors' background rejection performance, we are developing highly multiplexed detectors utilizing kinetic inductance detectors (KIDs) as phonon sensors. This work is detailed in chapter 3 and chapter 4. We have improved our previous KID and readout line designs, which enabled us to produce our first ø3" detector with 80 phonon sensors. The detector yielded a frequency placement accuracy of 0.07%, indicating our capability of implementing hundreds of phonon sensors in a typical SuperCDMS-style detector. We detail our fabrication technique for simultaneously employing Al and Nb for the KID circuit. We explain our signal model that includes extracting the RF signal, calibrating the RF signal into pair-breaking energy, and then the pulse detection. We summarize our noise condition and develop models for different noise sources. We combine the signal and the noise models to be an energy resolution model for KID-based phonon-mediated detectors. From this model, we propose strategies to further improve future detectors' energy resolution and introduce our ongoing implementations. Blackbody (BB) radiation is one of the plausible background sources responsible for the low-energy background currently preventing low-threshold DM experiments to search for lower DM mass ranges. In Chapter 5, we present our study for such background for cryogenic experiments. We have developed physical models and, based on the models, simulation tools for BB radiation propagation as photons or waves. We have also developed a theoretical model for BB photons' interaction with semiconductor impurities, which is one of the possible channels for generating the leakage current background in SuperCDMS-style detectors. We have planned for an experiment to calibrate our simulation and leakage current generation model. For the experiment, we have developed a specialized ``mesh TES'' photon detector inspired by cosmic microwave background experiments. We present its sensitivity model, the radiation source developed for the calibration, and the general plan of the experiment.</p

    Millimetre-Resolution Photonics-Assisted Radar

    Get PDF
    Radar is essential in applications such as anti-collision systems for driving, airport security screening, and contactless vital sign detection. The demand for high-resolution and real-time recognition in radar applications is growing, driving the development of electronic radars with increased bandwidth, higher frequency, and improved reconfigurability. However, conventional electronic approaches are challenging due to limitations in synthesising radar signals, limiting performance. In contrast, microwave photonics-enabled radars have gained interest because they offer numerous benefits compared to traditional electronic methods. Photonics-assisted techniques provide a broad fractional bandwidth at the optical carrier frequency and enable spectrum manipulation, producing wideband and high-resolution radar signals in various formats. However, photonic-based methods face limitations like low time-frequency linearity due to the inherent nonlinearity of lasers, restricted RF bandwidth, limited stability of the photonic frequency multipliers, and difficulties in achieving extended sensing with dispersion-based techniques. In response to these challenges, this thesis presents approaches for generating broadband radar signals with high time-frequency linearity using recirculated unidirectional optical frequency-shifted modulation. The photonics-assisted system allows flexible bandwidth tuning from sub-GHz to over 30 GHz and requires only MHz-level electronics. Such a system offers millimetre-level range resolution and a high imaging refresh rate, detecting fast-moving objects using the ISAR technique. With millimetre-level resolution and micrometre accuracy, this system supports contactless vital sign detection, capturing precise respiratory patterns from simulators and a living body using a cane toad. In the end, we highlight the promise of merging radar and LiDAR, foreshadowing future advancements in sensor fusion for enhanced sensing performance and resilience

    Antimicrobial Peptides Aka Host Defense Peptides – From Basic Research to Therapy

    Get PDF
    This Special Issue reprint will address the most current and innovative developments in the field of HDP research across a range of topics, such as structure and function analysis, modes of action, anti-microbial effects, cell and animal model systems, the discovery of novel host-defense peptides, and drug development

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Naval Postgraduate School Academic Catalog - February 2023

    Get PDF
    corecore