467 research outputs found

    Quadratically-Regularized Optimal Transport on Graphs

    Full text link
    Optimal transportation provides a means of lifting distances between points on a geometric domain to distances between signals over the domain, expressed as probability distributions. On a graph, transportation problems can be used to express challenging tasks involving matching supply to demand with minimal shipment expense; in discrete language, these become minimum-cost network flow problems. Regularization typically is needed to ensure uniqueness for the linear ground distance case and to improve optimization convergence; state-of-the-art techniques employ entropic regularization on the transportation matrix. In this paper, we explore a quadratic alternative to entropic regularization for transport over a graph. We theoretically analyze the behavior of quadratically-regularized graph transport, characterizing how regularization affects the structure of flows in the regime of small but nonzero regularization. We further exploit elegant second-order structure in the dual of this problem to derive an easily-implemented Newton-type optimization algorithm.Comment: 27 page

    Graph Signal Representation with Wasserstein Barycenters

    Get PDF
    In many applications signals reside on the vertices of weighted graphs. Thus, there is the need to learn low dimensional representations for graph signals that will allow for data analysis and interpretation. Existing unsupervised dimensionality reduction methods for graph signals have focused on dictionary learning. In these works the graph is taken into consideration by imposing a structure or a parametrization on the dictionary and the signals are represented as linear combinations of the atoms in the dictionary. However, the assumption that graph signals can be represented using linear combinations of atoms is not always appropriate. In this paper we propose a novel representation framework based on non-linear and geometry-aware combinations of graph signals by leveraging the mathematical theory of Optimal Transport. We represent graph signals as Wasserstein barycenters and demonstrate through our experiments the potential of our proposed framework for low-dimensional graph signal representation

    Application of Wasserstein attraction flows for optimal transport in network systems

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a Wasserstein attraction approach for solving dynamic mass transport problems over networks. In the transport problem over networks, we start with a distribution over the set of nodes that needs to be “transported” to a target distribution accounting for the network topology. We exploit the specific structure of the problem, characterized by the computation of implicit gradient steps, and formulate an approach based on discretized flows. As a result, our proposed algorithm relies on the iterative computation of constrained Wasserstein barycenters. We show how the proposed method finds approximate solutions to the network transport problem, taking into account the topology of the network, the capacity of the communication channels, and the capacity of the individual nodes.This paper has been partially supported by the LBEST project (Ref. PID2020-115905RB-C21) from the Spanish Ministry of Science and Innovation.Peer ReviewedPostprint (author's final draft

    Dynamical Optimal Transport on Discrete Surfaces

    Full text link
    We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finite-dimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows
    • …
    corecore