45 research outputs found

    On AVCs with Quadratic Constraints

    Full text link
    In this work we study an Arbitrarily Varying Channel (AVC) with quadratic power constraints on the transmitter and a so-called "oblivious" jammer (along with additional AWGN) under a maximum probability of error criterion, and no private randomness between the transmitter and the receiver. This is in contrast to similar AVC models under the average probability of error criterion considered in [1], and models wherein common randomness is allowed [2] -- these distinctions are important in some communication scenarios outlined below. We consider the regime where the jammer's power constraint is smaller than the transmitter's power constraint (in the other regime it is known no positive rate is possible). For this regime we show the existence of stochastic codes (with no common randomness between the transmitter and receiver) that enables reliable communication at the same rate as when the jammer is replaced with AWGN with the same power constraint. This matches known information-theoretic outer bounds. In addition to being a stronger result than that in [1] (enabling recovery of the results therein), our proof techniques are also somewhat more direct, and hence may be of independent interest.Comment: A shorter version of this work will be send to ISIT13, Istanbul. 8 pages, 3 figure

    Multiple Packing: Lower Bounds via Infinite Constellations

    Full text link
    We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let N>0 N>0 and LZ2 L\in\mathbb{Z}_{\ge2} . A multiple packing is a set C\mathcal{C} of points in Rn \mathbb{R}^n such that any point in Rn \mathbb{R}^n lies in the intersection of at most L1 L-1 balls of radius nN \sqrt{nN} around points in C \mathcal{C} . Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive the best known lower bounds on the optimal density of list-decodable infinite constellations for constant LL under a stronger notion called average-radius multiple packing. To this end, we apply tools from high-dimensional geometry and large deviation theory.Comment: The paper arXiv:2107.05161 has been split into three parts with new results added and significant revision. This paper is one of the three parts. The other two are arXiv:2211.04408 and arXiv:2211.0440

    List Decoding Random Euclidean Codes and Infinite Constellations

    Get PDF
    We study the list decodability of different ensembles of codes over the real alphabet under the assumption of an omniscient adversary. It is a well-known result that when the source and the adversary have power constraints P P and N N respectively, the list decoding capacity is equal to 12logPN \frac{1}{2}\log\frac{P}{N} . Random spherical codes achieve constant list sizes, and the goal of the present paper is to obtain a better understanding of the smallest achievable list size as a function of the gap to capacity. We show a reduction from arbitrary codes to spherical codes, and derive a lower bound on the list size of typical random spherical codes. We also give an upper bound on the list size achievable using nested Construction-A lattices and infinite Construction-A lattices. We then define and study a class of infinite constellations that generalize Construction-A lattices and prove upper and lower bounds for the same. Other goodness properties such as packing goodness and AWGN goodness of infinite constellations are proved along the way. Finally, we consider random lattices sampled from the Haar distribution and show that if a certain number-theoretic conjecture is true, then the list size grows as a polynomial function of the gap-to-capacity

    Multiple Packing: Lower Bounds via Error Exponents

    Full text link
    We derive lower bounds on the maximal rates for multiple packings in high-dimensional Euclidean spaces. Multiple packing is a natural generalization of the sphere packing problem. For any N>0 N>0 and LZ2 L\in\mathbb{Z}_{\ge2} , a multiple packing is a set C\mathcal{C} of points in Rn \mathbb{R}^n such that any point in Rn \mathbb{R}^n lies in the intersection of at most L1 L-1 balls of radius nN \sqrt{nN} around points in C \mathcal{C} . We study this problem for both bounded point sets whose points have norm at most nP\sqrt{nP} for some constant P>0P>0 and unbounded point sets whose points are allowed to be anywhere in Rn \mathbb{R}^n . Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. We derive the best known lower bounds on the optimal multiple packing density. This is accomplished by establishing a curious inequality which relates the list-decoding error exponent for additive white Gaussian noise channels, a quantity of average-case nature, to the list-decoding radius, a quantity of worst-case nature. We also derive various bounds on the list-decoding error exponent in both bounded and unbounded settings which are of independent interest beyond multiple packing.Comment: The paper arXiv:2107.05161 has been split into three parts with new results added and significant revision. This paper is one of the three parts. The other two are arXiv:2211.04407 and arXiv:2211.0440
    corecore