457 research outputs found

    Sinusoidal electromagnon in RMnO3: Indication of anomalous magnetoelectric coupling

    Get PDF
    The optical spectra in the family of multiferroic manganites RMnO3 is a great puzzle. Current models can not explain the fact that two strong electromagnons are present in the non-collinear spin cycloidal phase, with only one electromagnon surviving the transition into the collinear spin sinusoidal phase. We show that this is a signature of the presence of anomalous magnetoelectric coupling that breaks rotational invariance in spin space and generates oscillatory polarization in the ground state.Comment: 5 pages, 2 figure

    Anisotropy study of multiferroicity in the pyroxene NaFeGe2_2O6_6

    Full text link
    We present a study of the anisotropy of the dielectric, magnetic and magnetoelastic properties of the multiferroic clinopyroxene NaFeGe2_2O6_6. Pyroelectric currents, dielectric constants and magnetic susceptibilities as well as the thermal expansion and the magnetostriction were examined on large synthetic single crystals of NaFeGe2_2O6_6. The spontaneous electric polarization detected below TC11.6T_{\rm C}\simeq 11.6 K in an antiferromagnetically ordered state (TN13T_{\rm N}\simeq 13 K) is mainly lying within the acac plane with a small component along bb, indicating a triclinic symmetry of the multiferroic phase of NaFeGe2_2O6_6. The electric polarization can be strongly modified by applying magnetic fields along different directions. We derive detailed magnetic-field versus temperature phase diagrams and identify three multiferroic low-temperature phases, which are separated by a non-ferroelectric, antiferromagnetically ordered state from the paramagnetic high-temperature phase.Comment: 14 pages, 8 figures. (minor modifications and corrections of the text

    EXPERIMENTAL STUDIES OF PRESSURE DISTRIBUTION IN TILTING PAD THRUST BEARING WITH SINGLE CONTINUOUS SURFACE PROFILED SECTOR SHAPED PADS

    Get PDF
    The effect of the film shape on the load carrying capacity of a hydrodynamically lubricated bearing has not been considered an important factor in the past. Flat faced tapered bearing and the Raileigh\u27s step bearing of constant film thickness have been the primary forms of film shapes for slider bearing studies and design data developments. There are indications in the literature that surface profiling/texturing can have significant and positive influence on the load carrying capacity of hydrodynamic pad thrust bearings. Therefore, the objective of this paper is to compare the experimental results of pressure temperature distributions in slider bearing with flat surface and with different single continuous surface profiled (Cycloidal,Catenoidal,Quadratic) sector shaped pads. Pressure results presented in this paper can provide a platform for validation of theoretical models. An experimental study has been performed to investigate the influence of single continuous surface profiled sector shaped pads in tilting pad thrust bearing. It has been found that with cycloidal shaped surface profiled sector shaped pads the pressure generated within fluid film is enhanced which in turn causes enhancement in load bearing capacity of hydrodynamic bearing

    Spin-Hall magnetoresistance and spin Seebeck effect in spin-spiral and paramagnetic phases of multiferroic CoCr2O4 films

    Get PDF
    We report on the spin-Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) in multiferroic CoCr2O4 (CCO) spinel thin films with Pt contacts. We observe a large enhancement of both signals below the spin-spiral (Ts = 28 K) and the spin lock-in transitions (T_{lock_in} = 14 K). The SMR and SSE response in the spin lock-in phase are one order of magnitude larger than those observed at the ferrimagnetic transition temperature (Tc = 94 K), which indicates that the interaction between spins at the Pt|CCO interface is more efficient in the non-collinear magnetic state below Ts and T_{lock-in}. At T > Tc, magnetic field-induced SMR and SSE signals are observed, which can be explained by a high interface susceptibility. Our results show that the spin transport at the Pt|CCO interface is sensitive to the magnetic phases but cannot be explained solely by the bulk magnetization

    Thickness-dependent magnetic structure of ultrathin Fe/Ir(001) films: from spin-spiral states towards ferromagnetic order

    Full text link
    We present a detailed study of the ground-state magnetic structure of ultrathin Fe films on the surface of fcc Ir(001). We use the spin-cluster expansion technique in combination with the relativistic disordered local moment scheme to obtain parameters of spin models and then determine the favored magnetic structure of the system by means of a mean field approach and atomistic spin dynamics simulations. For the case of a single monolayer of Fe we find that layer relaxations very strongly influence the ground-state spin configurations, whereas Dzyaloshinskii-Moriya (DM) interactions and biquadratic couplings also have remarkable effects. To characterize the latter effect we introduce and analyze spin collinearity maps of the system. While for two monolayers of Fe we find a single-q spin spiral as ground state due to DM interactions, for the case of four monolayers the system shows a noncollinear spin structure with nonzero net magnetization. These findings are consistent with experimental measurements indicating ferromagnetic order in films of four monolayers and thicker.Comment: 9 pages, 7 figure

    Dependence of electronic polarization on octahedral rotations in TbMnO3 from first principles

    Full text link
    The electronic contribution to the magnetically induced polarization in orthorhombic TbMnO3 is studied from first principles. We compare the cases in which the spin cycloid, which induces the electric polarization via the spin-orbit interaction, is in either the b-c or a-b plane. We find that the electronic contribution is negligible in the first case, but much larger, and comparable to the lattice-mediated contribution, in the second case. However, we how that this behavior is an artifact of the particular pattern of octahedral rotations characterizing the structurally relaxed Pbnm crystal structure. To do so, we explore how the electronic contribution varies for a structural model of rigidly rotated MnO6 octahedra, and demonstrate that it can vary over a wide range, comparable with the lattice-mediated contribution, for both b-c and a-b spirals. We introduce a phenomenological model that is capable of describing this behavior in terms of sums of symmetry-constrained contributions arising from the displacements of oxygen atoms from the centers of the Mn-Mn bonds.Comment: 8 pages, 5 figures, 3 table
    corecore