4,397 research outputs found

    Integer Factorization with a Neuromorphic Sieve

    Full text link
    The bound to factor large integers is dominated by the computational effort to discover numbers that are smooth, typically performed by sieving a polynomial sequence. On a von Neumann architecture, sieving has log-log amortized time complexity to check each value for smoothness. This work presents a neuromorphic sieve that achieves a constant time check for smoothness by exploiting two characteristic properties of neuromorphic architectures: constant time synaptic integration and massively parallel computation. The approach is validated by modifying msieve, one of the fastest publicly available integer factorization implementations, to use the IBM Neurosynaptic System (NS1e) as a coprocessor for the sieving stage.Comment: Fixed typos in equation for modular roots (Section II, par. 6; Section III, par. 2) and phase calculation (Section IV, par 2

    A construction of polynomials with squarefree discriminants

    Full text link
    For any integer n >= 2 and any nonnegative integers r,s with r+2s = n, we give an unconditional construction of infinitely many monic irreducible polynomials of degree n with integer coefficients having squarefree discriminant and exactly r real roots. These give rise to number fields of degree n, signature (r,s), Galois group S_n, and squarefree discriminant; we may also force the discriminant to be coprime to any given integer. The number of fields produced with discriminant in the range [-N, N] is at least c N^(1/(n-1)). A corollary is that for each n \geq 3, infinitely many quadratic number fields admit everywhere unramified degree n extensions whose normal closures have Galois group A_n. This generalizes results of Yamamura, who treats the case n = 5, and Uchida and Yamamoto, who allow general n but do not control the real place.Comment: 10 pages; v2: refereed version, minor edits onl

    Practical improvements to class group and regulator computation of real quadratic fields

    Get PDF
    We present improvements to the index-calculus algorithm for the computation of the ideal class group and regulator of a real quadratic field. Our improvements consist of applying the double large prime strategy, an improved structured Gaussian elimination strategy, and the use of Bernstein's batch smoothness algorithm. We achieve a significant speed-up and are able to compute the ideal class group structure and the regulator corresponding to a number field with a 110-decimal digit discriminant

    Root optimization of polynomials in the number field sieve

    Get PDF
    The general number field sieve (GNFS) is the most efficient algorithm known for factoring large integers. It consists of several stages, the first one being polynomial selection. The quality of the chosen polynomials in polynomial selection can be modelled in terms of size and root properties. In this paper, we describe some algorithms for selecting polynomials with very good root properties.Comment: 16 pages, 18 reference

    Improvements in the computation of ideal class groups of imaginary quadratic number fields

    Full text link
    We investigate improvements to the algorithm for the computation of ideal class groups described by Jacobson in the imaginary quadratic case. These improvements rely on the large prime strategy and a new method for performing the linear algebra phase. We achieve a significant speed-up and are able to compute ideal class groups with discriminants of 110 decimal digits in less than a week.Comment: 14 pages, 5 figure
    • …
    corecore