401 research outputs found

    Linear programming on the Stiefel manifold

    Full text link
    Linear programming on the Stiefel manifold (LPS) is studied for the first time. It aims at minimizing a linear objective function over the set of all pp-tuples of orthonormal vectors in Rn{\mathbb R}^n satisfying kk additional linear constraints. Despite the classical polynomial-time solvable case k=0k=0, general (LPS) is NP-hard. According to the Shapiro-Barvinok-Pataki theorem, (LPS) admits an exact semidefinite programming (SDP) relaxation when p(p+1)/2≤n−kp(p+1)/2\le n-k, which is tight when p=1p=1. Surprisingly, we can greatly strengthen this sufficient exactness condition to p≤n−kp\le n-k, which covers the classical case p≤np\le n and k=0k=0. Regarding (LPS) as a smooth nonlinear programming problem, we reveal a nice property that under the linear independence constraint qualification, the standard first- and second-order {\it local} necessary optimality conditions are sufficient for {\it global} optimality when p+1≤n−kp+1\le n-k

    Gradient type optimization methods for electronic structure calculations

    Full text link
    The density functional theory (DFT) in electronic structure calculations can be formulated as either a nonlinear eigenvalue or direct minimization problem. The most widely used approach for solving the former is the so-called self-consistent field (SCF) iteration. A common observation is that the convergence of SCF is not clear theoretically while approaches with convergence guarantee for solving the latter are often not competitive to SCF numerically. In this paper, we study gradient type methods for solving the direct minimization problem by constructing new iterations along the gradient on the Stiefel manifold. Global convergence (i.e., convergence to a stationary point from any initial solution) as well as local convergence rate follows from the standard theory for optimization on manifold directly. A major computational advantage is that the computation of linear eigenvalue problems is no longer needed. The main costs of our approaches arise from the assembling of the total energy functional and its gradient and the projection onto the manifold. These tasks are cheaper than eigenvalue computation and they are often more suitable for parallelization as long as the evaluation of the total energy functional and its gradient is efficient. Numerical results show that they can outperform SCF consistently on many practically large systems.Comment: 24 pages, 11 figures, 59 references, and 1 acknowledgement
    • …
    corecore