36,636 research outputs found

    Control bifurcations

    Get PDF
    A parametrized nonlinear differential equation can have multiple equilibria as the parameter is varied. A local bifurcation of a parametrized differential equation occurs at an equilibrium where there is a change in the topological character of the nearby solution curves. This typically happens because some eigenvalues of the parametrized linear approximating differential equation cross the imaginary axis and there is a change in stability of the equilibrium. The topological nature of the solutions is unchanged by smooth changes of state coordinates so these may be used to bring the differential equation into Poincare/spl acute/ normal form. From this normal form, the type of the bifurcation can be determined. For differential equations depending on a single parameter, the typical ways that the system can bifurcate are fully understood, e.g., the fold (or saddle node), the transcritical and the Hopf bifurcation. A nonlinear control system has multiple equilibria typically parametrized by the set value of the control. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. The ways in which this can happen are understood through the appropriate normal forms. We present the quadratic and cubic normal forms of a scalar input nonlinear control system around an equilibrium point. These are the normal forms under quadratic and cubic change of state coordinates and invertible state feedback. The system need not be linearly controllable. We study some important control bifurcations, the analogues of the classical fold, transcritical and Hopf bifurcations

    Apollonian Circle Packings: Geometry and Group Theory III. Higher Dimensions

    Full text link
    This paper gives nn-dimensional analogues of the Apollonian circle packings in parts I and II. We work in the space \sM_{\dd}^n of all nn-dimensional oriented Descartes configurations parametrized in a coordinate system, ACC-coordinates, as those (n+2)×(n+2)(n+2) \times (n+2) real matrices \bW with \bW^T \bQ_{D,n} \bW = \bQ_{W,n} where QD,n=x12+...+xn+221n(x1+...+xn+2)2Q_{D,n} = x_1^2 +... + x_{n+2}^2 - \frac{1}{n}(x_1 +... + x_{n+2})^2 is the nn-dimensional Descartes quadratic form, QW,n=8x1x2+2x32+...+2xn+22Q_{W,n} = -8x_1x_2 + 2x_3^2 + ... + 2x_{n+2}^2, and \bQ_{D,n} and \bQ_{W,n} are their corresponding symmetric matrices. There are natural actions on the parameter space \sM_{\dd}^n. We introduce nn-dimensional analogues of the Apollonian group, the dual Apollonian group and the super-Apollonian group. These are finitely generated groups with the following integrality properties: the dual Apollonian group consists of integral matrices in all dimensions, while the other two consist of rational matrices, with denominators having prime divisors drawn from a finite set SS depending on the dimension. We show that the the Apollonian group and the dual Apollonian group are finitely presented, and are Coxeter groups. We define an Apollonian cluster ensemble to be any orbit under the Apollonian group, with similar notions for the other two groups. We determine in which dimensions one can find rational Apollonian cluster ensembles (all curvatures rational) and strongly rational Apollonian sphere ensembles (all ACC-coordinates rational).Comment: 37 pages. The third in a series on Apollonian circle packings beginning with math.MG/0010298. Revised and extended. Added: Apollonian groups and Apollonian Cluster Ensembles (Section 4),and Presentation for n-dimensional Apollonian Group (Section 5). Slight revision on March 10, 200

    A cuspidality criterion for the functorial product on GL(2) x GL(3), with a cohomological application

    Full text link
    This paper was motivated by a question of Avner Ash, asking if it is possible to construct non-selfdual, non-monomial, cuspidal cohomology classes for suitable congruence subgroups \Gamma of SL(n,\Z). Such a construction, in special examples, has been known for some time for n=3; it is of course impossible for n=2. We show in this paper the existence of many such examples for n=6, which are primitive, by making use of the functorial product on GL(2) x GL(3), which was recently shown to be automorphic by Kim and Shahidi. We establish a general cuspidality criterion for this product, which is essential to the construction. We also show that there exist non-selfdual, monomial (cuspidal) classes for any n=2m > 3, and non-selfdual, non-monomial (but imprimitive) classes for n=4
    corecore