53,227 research outputs found

    Regularized Optimal Transport and the Rot Mover's Distance

    Full text link
    This paper presents a unified framework for smooth convex regularization of discrete optimal transport problems. In this context, the regularized optimal transport turns out to be equivalent to a matrix nearness problem with respect to Bregman divergences. Our framework thus naturally generalizes a previously proposed regularization based on the Boltzmann-Shannon entropy related to the Kullback-Leibler divergence, and solved with the Sinkhorn-Knopp algorithm. We call the regularized optimal transport distance the rot mover's distance in reference to the classical earth mover's distance. We develop two generic schemes that we respectively call the alternate scaling algorithm and the non-negative alternate scaling algorithm, to compute efficiently the regularized optimal plans depending on whether the domain of the regularizer lies within the non-negative orthant or not. These schemes are based on Dykstra's algorithm with alternate Bregman projections, and further exploit the Newton-Raphson method when applied to separable divergences. We enhance the separable case with a sparse extension to deal with high data dimensions. We also instantiate our proposed framework and discuss the inherent specificities for well-known regularizers and statistical divergences in the machine learning and information geometry communities. Finally, we demonstrate the merits of our methods with experiments using synthetic data to illustrate the effect of different regularizers and penalties on the solutions, as well as real-world data for a pattern recognition application to audio scene classification

    A new steplength selection for scaled gradient methods with application to image deblurring

    Get PDF
    Gradient methods are frequently used in large scale image deblurring problems since they avoid the onerous computation of the Hessian matrix of the objective function. Second order information is typically sought by a clever choice of the steplength parameter defining the descent direction, as in the case of the well-known Barzilai and Borwein rules. In a recent paper, a strategy for the steplength selection approximating the inverse of some eigenvalues of the Hessian matrix has been proposed for gradient methods applied to unconstrained minimization problems. In the quadratic case, this approach is based on a Lanczos process applied every m iterations to the matrix of the most recent m back gradients but the idea can be extended to a general objective function. In this paper we extend this rule to the case of scaled gradient projection methods applied to non-negatively constrained minimization problems, and we test the effectiveness of the proposed strategy in image deblurring problems in both the presence and the absence of an explicit edge-preserving regularization term

    OSQP: An Operator Splitting Solver for Quadratic Programs

    Full text link
    We present a general-purpose solver for convex quadratic programs based on the alternating direction method of multipliers, employing a novel operator splitting technique that requires the solution of a quasi-definite linear system with the same coefficient matrix at almost every iteration. Our algorithm is very robust, placing no requirements on the problem data such as positive definiteness of the objective function or linear independence of the constraint functions. It can be configured to be division-free once an initial matrix factorization is carried out, making it suitable for real-time applications in embedded systems. In addition, our technique is the first operator splitting method for quadratic programs able to reliably detect primal and dual infeasible problems from the algorithm iterates. The method also supports factorization caching and warm starting, making it particularly efficient when solving parametrized problems arising in finance, control, and machine learning. Our open-source C implementation OSQP has a small footprint, is library-free, and has been extensively tested on many problem instances from a wide variety of application areas. It is typically ten times faster than competing interior-point methods, and sometimes much more when factorization caching or warm start is used. OSQP has already shown a large impact with tens of thousands of users both in academia and in large corporations

    A semismooth newton method for the nearest Euclidean distance matrix problem

    No full text
    The Nearest Euclidean distance matrix problem (NEDM) is a fundamentalcomputational problem in applications such asmultidimensional scaling and molecularconformation from nuclear magnetic resonance data in computational chemistry.Especially in the latter application, the problem is often large scale with the number ofatoms ranging from a few hundreds to a few thousands.In this paper, we introduce asemismooth Newton method that solves the dual problem of (NEDM). We prove that themethod is quadratically convergent.We then present an application of the Newton method to NEDM with HH-weights.We demonstrate the superior performance of the Newton method over existing methodsincluding the latest quadratic semi-definite programming solver.This research also opens a new avenue towards efficient solution methods for the molecularembedding problem

    On limited-memory quasi-Newton methods for minimizing a quadratic function

    Full text link
    The main focus in this paper is exact linesearch methods for minimizing a quadratic function whose Hessian is positive definite. We give two classes of limited-memory quasi-Newton Hessian approximations that generate search directions parallel to those of the method of preconditioned conjugate gradients, and hence give finite termination on quadratic optimization problems. The Hessian approximations are described by a novel compact representation which provides a dynamical framework. We also discuss possible extensions of these classes and show their behavior on randomly generated quadratic optimization problems. The methods behave numerically similar to L-BFGS. Inclusion of information from the first iteration in the limited-memory Hessian approximation and L-BFGS significantly reduces the effects of round-off errors on the considered problems. In addition, we give our compact representation of the Hessian approximations in the full Broyden class for the general unconstrained optimization problem. This representation consists of explicit matrices and gradients only as vector components

    On affine scaling inexact dogleg methods for bound-constrained nonlinear systems

    Get PDF
    Within the framework of affine scaling trust-region methods for bound constrained problems, we discuss the use of a inexact dogleg method as a tool for simultaneously handling the trust-region and the bound constraints while seeking for an approximate minimizer of the model. Focusing on bound-constrained systems of nonlinear equations, an inexact affine scaling method for large scale problems, employing the inexact dogleg procedure, is described. Global convergence results are established without any Lipschitz assumption on the Jacobian matrix, and locally fast convergence is shown under standard assumptions. Convergence analysis is performed without specifying the scaling matrix used to handle the bounds, and a rather general class of scaling matrices is allowed in actual algorithms. Numerical results showing the performance of the method are also given
    • …
    corecore