1 research outputs found

    QoS-Constrained Sum-Harvested Energy Maximization in OFDMA-based Wireless Cooperative Networks

    Get PDF
    We investigate the performances of the time-switching (TS) and power-splitting (PS) based energy harvesting models in a two-hop relay assisted network where the end-users are capable of decoding information and harvesting energy concurrently. In particular, we consider joint resource allocation and relay selection to realize Simultaneous Wireless Transmission of Information and Energy (Wi-TIE) in a multi-carrier multi-user cooperative system where the relays employ the amplify-and-forward (AF) protocol. First, we formulate based on the TS and PS Wi-TIE architectures an optimization problem to maximize the sum of energy harvested at the end-users, taking into consideration each user's quality-of-service (QoS) requirement as well as power constraints at the transmit and relaying nodes. We then solve the formulated problem to optimize the users' Wi-TIE splitting factors along with relay-user coupling, sub-carrier-user assignment, sub-carrier pairing, and power allocation. Finally, we demonstrate the benefits of the proposed framework via numerical results
    corecore