1,612 research outputs found

    A Survey on QoE-oriented Wireless Resources Scheduling

    Full text link
    Future wireless systems are expected to provide a wide range of services to more and more users. Advanced scheduling strategies thus arise not only to perform efficient radio resource management, but also to provide fairness among the users. On the other hand, the users' perceived quality, i.e., Quality of Experience (QoE), is becoming one of the main drivers within the schedulers design. In this context, this paper starts by providing a comprehension of what is QoE and an overview of the evolution of wireless scheduling techniques. Afterwards, a survey on the most recent QoE-based scheduling strategies for wireless systems is presented, highlighting the application/service of the different approaches reported in the literature, as well as the parameters that were taken into account for QoE optimization. Therefore, this paper aims at helping readers interested in learning the basic concepts of QoE-oriented wireless resources scheduling, as well as getting in touch with its current research frontier.Comment: Revised version: updated according to the most recent related literature; added references; corrected typo

    Effective Capacity in Wireless Networks: A Comprehensive Survey

    Full text link
    Low latency applications, such as multimedia communications, autonomous vehicles, and Tactile Internet are the emerging applications for next-generation wireless networks, such as 5th generation (5G) mobile networks. Existing physical-layer channel models, however, do not explicitly consider quality-of-service (QoS) aware related parameters under specific delay constraints. To investigate the performance of low-latency applications in future networks, a new mathematical framework is needed. Effective capacity (EC), which is a link-layer channel model with QoS-awareness, can be used to investigate the performance of wireless networks under certain statistical delay constraints. In this paper, we provide a comprehensive survey on existing works, that use the EC model in various wireless networks. We summarize the work related to EC for different networks such as cognitive radio networks (CRNs), cellular networks, relay networks, adhoc networks, and mesh networks. We explore five case studies encompassing EC operation with different design and architectural requirements. We survey various delay-sensitive applications such as voice and video with their EC analysis under certain delay constraints. We finally present the future research directions with open issues covering EC maximization

    Effective Capacity Analysis of Cognitive Radio Channels for Quality of Service Provisioning

    Full text link
    In this paper, cognitive transmission under quality of service (QoS) constraints is studied. In the cognitive radio channel model, it is assumed that the secondary transmitter sends the data at two different average power levels, depending on the activity of the primary users, which is determined by channel sensing performed by the secondary users. A state-transition model is constructed for this cognitive transmission channel. Statistical limitations on the buffer lengths are imposed to take into account the QoS constraints. The maximum throughput under these statistical QoS constraints is identified by finding the effective capacity of the cognitive radio channel. This analysis is conducted for fixed-power/fixed-rate, fixed-power/variable-rate, and variable-power/variable-rate transmission schemes under different assumptions on the availability of channel side information (CSI) at the transmitter. The impact upon the effective capacity of several system parameters, including channel sensing duration, detection threshold, detection and false alarm probabilities, QoS parameters, and transmission rates, is investigated. The performances of fixed-rate and variable-rate transmission methods are compared in the presence of QoS limitations. It is shown that variable schemes outperform fixed-rate transmission techniques if the detection probabilities are high. Performance gains through adapting the power and rate are quantified and it is shown that these gains diminish as the QoS limitations become more stringent

    Throughput of Cognitive Radio Systems with Finite Blocklength Codes

    Full text link
    In this paper, throughput achieved in cognitive radio channels with finite blocklength codes under buffer limitations is studied. Cognitive users first determine the activity of the primary users' through channel sensing and then initiate data transmission at a power level that depends on the channel sensing decisions. It is assumed that finite blocklength codes are employed in the data transmission phase. Hence, errors can occur in reception and retransmissions can be required. Primary users' activities are modeled as a two-state Markov chain and an eight-state Markov chain is constructed in order to model the cognitive radio channel. Channel state information (CSI) is assumed to be perfectly known by either the secondary receiver only or both the secondary transmitter and receiver. In the absence of CSI at the transmitter, fixed-rate transmission is performed whereas under perfect CSI knowledge, for a given target error probability, the transmitter varies the rate according to the channel conditions. Under these assumptions, throughput in the presence of buffer constraints is determined by characterizing the maximum constant arrival rates that can be supported by the cognitive radio channel while satisfying certain limits on buffer violation probabilities. Tradeoffs between throughput, buffer constraints, coding blocklength, and sensing duration for both fixed-rate and variable-rate transmissions are analyzed numerically. The relations between average error probability, sensing threshold and sensing duration are studied in the case of variable-rate transmissions.Comment: To appear in the IEEE Journal on Selected Areas in Communications- Cognitive Radio Serie

    QoS Provisioning for Multimedia Transmission in Cognitive Radio Networks

    Full text link
    In cognitive radio (CR) networks, the perceived reduction of application layer quality of service (QoS), such as multimedia distortion, by secondary users may impede the success of CR technologies. Most previous work in CR networks ignores application layer QoS. In this paper we take an integrated design approach to jointly optimize multimedia intra refreshing rate, an application layer parameter, together with access strategy, and spectrum sensing for multimedia transmission in a CR system with time varying wireless channels. Primary network usage and channel gain are modeled as a finite state Markov process. With channel sensing and channel state information errors, the system state cannot be directly observed. We formulate the QoS optimization problem as a partially observable Markov decision process (POMDP). A low complexity dynamic programming framework is presented to obtain the optimal policy. Simulation results show the effectiveness of the proposed scheme

    Probability Density Function Estimation in OFDM Transmitter and Receiver in Radio Cognitive Networks based on Recurrent Neural Network

    Full text link
    The most important problem in telecommunication is bandwidth limitation due to the uncontrolled growth of wireless technology. Deploying dynamic spectrum access techniques is one of the procedures provided for efficient use of bandwidth. In recent years, cognitive radio network introduced as a tool for efficient use of spectrum. These radios are able to use radio resources by recognizing surroundings via sensors and signal operations that means use these resources only when authorized users do not use their spectrum. Secondary users are unauthorized ones that must avoid from interferences with primary users transmission. Secondary users must leave channel due to preventing damages to primary users whenever these users discretion. In this article, spectrum opportunities prediction based on Recurrent Neural Network for bandwidth optimization and reducing the amount of energy by predicting spectrum holes discovery for quality of services optimization proposed in OFDM-based cognitive radio network based on probability density function. The result of the simulation represent acceptable value of SNR and bandwidth optimization in these networks that allows secondary users to taking spectrum and sending data without collision and overlapping with primary users.Comment: OFDM, Cognitive Radio Networks, Recurrent Neural Network, Probability Density Functio

    On the Throughput and Energy Efficiency of Cognitive MIMO Transmissions

    Full text link
    In this paper, throughput and energy efficiency of cognitive multiple-input multiple-output (MIMO) systems operating under quality-of-service (QoS) constraints, interference limitations, and imperfect channel sensing, are studied. It is assumed that transmission power and covariance of the input signal vectors are varied depending on the sensed activities of primary users (PUs) in the system. Interference constraints are applied on the transmission power levels of cognitive radios (CRs) to provide protection for the PUs whose activities are modeled as a Markov chain. Considering the reliability of the transmissions and channel sensing results, a state-transition model is provided. Throughput is determined by formulating the effective capacity. First derivative of the effective capacity is derived in the low-power regime and the minimum bit energy requirements in the presence of QoS limitations and imperfect sensing results are identified. Minimum energy per bit is shown to be achieved by beamforming in the maximal-eigenvalue eigenspace of certain matrices related to the channel matrix. In a special case, wideband slope is determined for more refined analysis of energy efficiency. Numerical results are provided for the throughput for various levels of buffer constraints and different number of transmit and receive antennas. The impact of interference constraints and benefits of multiple-antenna transmissions are determined. It is shown that increasing the number of antennas when the interference power constraint is stringent is generally beneficial. On the other hand, it is shown that under relatively loose interference constraints, increasing the number of antennas beyond a certain level does not lead to much increase in the throughput

    Cross-layer Design in Cognitive Radio Standards

    Full text link
    The growing demand for wireless applications and services on the one hand, and limited available radio spectrum on the other hand have made cognitive radio (CR) a promising solution for future mobile networks. It has attracted considerable attention by academia and industry since its introduction in 1999 and several relevant standards have been developed within the last decade. Cognitive radio is based on four main functions, spanning across more than one layer of OSI model. Therefore, solutions based on cognitive radio technology require cross layer (CL) designs for optimum performance. This article briefly reviews the basics of cognitive radio technology as an introduction and highlights the need for cross layer design in systems deploying CR technology. Then some of the published standards with CL characteristics are outlined in a later section, and in the final section some research examples of cross layer design ideas based on the existing CR standards conclude this article

    Techniques for Cooperative Cognitive Radio Networks

    Full text link
    The frequency spectrum is an essential resource for wireless communication. Special sections of the spectrum are used for military purposes, governments sell some frequency bands to broadcasting and mobile communications companies for commercial use, others such as ISM (Industrial, Science and Medical) bands are available for the public free of charge. As the spectrum becomes overcrowded, there seem to be two possible solutions: pushing the frequency limits higher to frequencies of 60 GHz and above, or reaggregating the densely used licensed frequency bands. The new Cognitive Radio (CR) approach comes with the feasible solution to spectrum scarcity. Secondary utilization of a licensed spectrum band can enhance the spectrum usage and introduce a reliable solution to its dearth. In such a cognitive radio network, secondary users can access the spectrum under the constraint that a minimum quality of service is guaranteed for the licensed primary users. In this thesis, we focus on spectrum sharing techniques in cognitive radio network where there is a number of secondary users sharing unoccupied spectrum holes. More specifically, we introduce two collaborative cognitive radio networks in which the secondary user cooperate with the primary user to deliver the data of the primary user.Comment: Master's thesi

    QoS group based optimal retransmission medium access protocol for wireless sensor networks

    Full text link
    This paper presents, a Group Based Optimal Retransmission Medium Access (GORMA) Protocol is designed that combines protocol of Collision Avoidance (CA) and energy management for low-cost, short-range, low-data rate and low-energy sensor nodes applications in environment monitoring, agriculture, industrial plants etc. In this paper, the GORMA protocol focuses on efficient MAC protocol to provide autonomous Quality of Service (QoS) to the sensor nodes in one-hop QoS retransmission group and two QoS groups in WSNs where the source nodes do not have receiver circuits. Hence, they can only transmit data to a sink node, but cannot receive acknowledgement control signals from the sink node. The proposed protocol GORMA provides QoS to the nodes which work independently on predefined time by allowing them to transmit each packet an optimal number of times within a given period. Our simulation results shows that the performance of GORMA protocol, which maximize the delivery probability of one-hop QoS group and two QoS groups and minimize the energy consumption.Comment: 9 pages in IEEE format and 6 figure
    • …
    corecore