780 research outputs found

    User Transmit Power Minimization through Uplink Resource Allocation and User Association in HetNets

    Full text link
    The popularity of cellular internet of things (IoT) is increasing day by day and billions of IoT devices will be connected to the internet. Many of these devices have limited battery life with constraints on transmit power. High user power consumption in cellular networks restricts the deployment of many IoT devices in 5G. To enable the inclusion of these devices, 5G should be supplemented with strategies and schemes to reduce user power consumption. Therefore, we present a novel joint uplink user association and resource allocation scheme for minimizing user transmit power while meeting the quality of service. We analyze our scheme for two-tier heterogeneous network (HetNet) and show an average transmit power of -2.8 dBm and 8.2 dBm for our algorithms compared to 20 dBm in state-of-the-art Max reference signal received power (RSRP) and channel individual offset (CIO) based association schemes

    An Efficient Requirement-Aware Attachment Policy for Future Millimeter Wave Vehicular Networks

    Full text link
    The automotive industry is rapidly evolving towards connected and autonomous vehicles, whose ever more stringent data traffic requirements might exceed the capacity of traditional technologies for vehicular networks. In this scenario, densely deploying millimeter wave (mmWave) base stations is a promising approach to provide very high transmission speeds to the vehicles. However, mmWave signals suffer from high path and penetration losses which might render the communication unreliable and discontinuous. Coexistence between mmWave and Long Term Evolution (LTE) communication systems has therefore been considered to guarantee increased capacity and robustness through heterogeneous networking. Following this rationale, we face the challenge of designing fair and efficient attachment policies in heterogeneous vehicular networks. Traditional methods based on received signal quality criteria lack consideration of the vehicle's individual requirements and traffic demands, and lead to suboptimal resource allocation across the network. In this paper we propose a Quality-of-Service (QoS) aware attachment scheme which biases the cell selection as a function of the vehicular service requirements, preventing the overload of transmission links. Our simulations demonstrate that the proposed strategy significantly improves the percentage of vehicles satisfying application requirements and delivers efficient and fair association compared to state-of-the-art schemes.Comment: 8 pages, 8 figures, 2 tables, accepted to the 30th IEEE Intelligent Vehicles Symposiu

    Energy Efficient User Association and Power Allocation in Millimeter Wave Based Ultra Dense Networks with Energy Harvesting Base Stations

    Full text link
    Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem is modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and the effectiveness of the proposed scheme compared with existing methods is verified by simulations.Comment: to appear, IEEE Journal on Selected Areas in Communications, 201

    User Association in 5G Networks: A Survey and an Outlook

    Get PDF
    26 pages; accepted to appear in IEEE Communications Surveys and Tutorial

    Joint Downlink Base Station Association and Power Control for Max-Min Fairness: Computation and Complexity

    Get PDF
    In a heterogeneous network (HetNet) with a large number of low power base stations (BSs), proper user-BS association and power control is crucial to achieving desirable system performance. In this paper, we systematically study the joint BS association and power allocation problem for a downlink cellular network under the max-min fairness criterion. First, we show that this problem is NP-hard. Second, we show that the upper bound of the optimal value can be easily computed, and propose a two-stage algorithm to find a high-quality suboptimal solution. Simulation results show that the proposed algorithm is near-optimal in the high-SNR regime. Third, we show that the problem under some additional mild assumptions can be solved to global optima in polynomial time by a semi-distributed algorithm. This result is based on a transformation of the original problem to an assignment problem with gains log(gij)\log(g_{ij}), where {gij}\{g_{ij}\} are the channel gains.Comment: 24 pages, 7 figures, a shorter version submitted to IEEE JSA
    corecore