124 research outputs found

    Scalable Multiuser Immersive Communications with Multi-numerology and Mini-slot

    Full text link
    This paper studies multiuser immersive communications networks in which different user equipment may demand various extended reality (XR) services. In such heterogeneous networks, time-frequency resource allocation needs to be more adaptive since XR services are usually multi-modal and latency-sensitive. To this end, we develop a scalable time-frequency resource allocation method based on multi-numerology and mini-slot. To appropriately determining the discrete parameters of multi-numerology and mini-slot for multiuser immersive communications, the proposed method first presents a novel flexible time-frequency resource block configuration, then it leverages the deep reinforcement learning to maximize the total quality-of-experience (QoE) under different users' QoE constraints. The results confirm the efficiency and scalability of the proposed time-frequency resource allocation method

    An intelligent fuzzy logic-based content and channel aware downlink scheduler for scalable video over OFDMA wireless systems

    Get PDF
    The recent advancements of wireless technology and applications make downlink scheduling and resource allocations an important research topic. In this paper, we consider the problem of downlink scheduling for multi-user scalable video streaming over OFDMA channels. The video streams are precoded using a scalable video coding (SVC) scheme. We propose a fuzzy logic-based scheduling algorithm, which prioritises the transmission to different users by considering video content, and channel conditions. Furthermore, a novel analytical model and a new performance metric have been developed for the performance analysis of the proposed scheduling algorithm. The obtained results show that the proposed algorithm outperforms the content-blind/channel aware scheduling algorithms with a gain of as much as 19% in terms of the number of supported users. The proposed algorithm allows for a fairer allocation of resources among users across the entire sector coverage, allowing for the enhancement of video quality at edges of the cell while minimising the degradation of users closer to the base station
    corecore