183 research outputs found

    Digital Twin-Based Network Management for Better QoE in Multicast Short Video Streaming

    Full text link
    Multicast short video streaming can enhance bandwidth utilization by enabling simultaneous video transmission to multiple users over shared wireless channels. The existing network management schemes mainly rely on the sequential buffering principle and general quality of experience (QoE) model, which may deteriorate QoE when users' swipe behaviors exhibit distinct spatiotemporal variation. In this paper, we propose a digital twin (DT)-based network management scheme to enhance QoE. Firstly, user status emulated by the DT is utilized to estimate the transmission capabilities and watching probability distributions of sub-multicast groups (SMGs) for an adaptive segment buffering. The SMGs' buffers are aligned to the unique virtual buffers managed by the DT for a fine-grained buffer update. Then, a multicast QoE model consisting of rebuffering time, video quality, and quality variation is developed, by considering the mutual influence of segment buffering among SMGs. Finally, a joint optimization problem of segment version selection and slot division is formulated to maximize QoE. To efficiently solve the problem, a data-model-driven algorithm is proposed by integrating a convex optimization method and a deep reinforcement learning algorithm. Simulation results based on the real-world dataset demonstrate that the proposed DT-based network management scheme outperforms benchmark schemes in terms of QoE improvement.Comment: 13 pages, 12 figure

    Survey of Transportation of Adaptive Multimedia Streaming service in Internet

    Full text link
    [DE] World Wide Web is the greatest boon towards the technological advancement of modern era. Using the benefits of Internet globally, anywhere and anytime, users can avail the benefits of accessing live and on demand video services. The streaming media systems such as YouTube, Netflix, and Apple Music are reining the multimedia world with frequent popularity among users. A key concern of quality perceived for video streaming applications over Internet is the Quality of Experience (QoE) that users go through. Due to changing network conditions, bit rate and initial delay and the multimedia file freezes or provide poor video quality to the end users, researchers across industry and academia are explored HTTP Adaptive Streaming (HAS), which split the video content into multiple segments and offer the clients at varying qualities. The video player at the client side plays a vital role in buffer management and choosing the appropriate bit rate for each such segment of video to be transmitted. A higher bit rate transmitted video pauses in between whereas, a lower bit rate video lacks in quality, requiring a tradeoff between them. The need of the hour was to adaptively varying the bit rate and video quality to match the transmission media conditions. Further, The main aim of this paper is to give an overview on the state of the art HAS techniques across multimedia and networking domains. A detailed survey was conducted to analyze challenges and solutions in adaptive streaming algorithms, QoE, network protocols, buffering and etc. It also focuses on various challenges on QoE influence factors in a fluctuating network condition, which are often ignored in present HAS methodologies. Furthermore, this survey will enable network and multimedia researchers a fair amount of understanding about the latest happenings of adaptive streaming and the necessary improvements that can be incorporated in future developments.Abdullah, MTA.; Lloret, J.; Canovas Solbes, A.; García-García, L. (2017). Survey of Transportation of Adaptive Multimedia Streaming service in Internet. Network Protocols and Algorithms. 9(1-2):85-125. doi:10.5296/npa.v9i1-2.12412S8512591-

    QoS monitoring in real-time streaming overlays based on lock-free data structures

    Get PDF
    AbstractPeer-to-peer streaming is a well-known technology for the large-scale distribution of real-time audio/video contents. Delay requirements are very strict in interactive real-time scenarios (such as synchronous distance learning), where playback lag should be of the order of seconds. Playback continuity is another key aspect in these cases: in presence of peer churning and network congestion, a peer-to-peer overlay should quickly rearrange connections among receiving nodes to avoid freezing phenomena that may compromise audio/video understanding. For this reason, we designed a QoS monitoring algorithm that quickly detects broken or congested links: each receiving node is able to independently decide whether it should switch to a secondary sending node, called "fallback node". The architecture takes advantage of a multithreaded design based on lock-free data structures, which improve the performance by avoiding synchronization among threads. We will show the good responsiveness of the proposed approach on machines with different computational capabilities: measured times prove both departures of nodes and QoS degradations are promptly detected and clients can quickly restore a stream reception. According to PSNR and SSIM, two well-known full-reference video quality metrics, QoE remains acceptable on receiving nodes of our resilient overlay also in presence of swap procedures

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Metrics, fundamental trade-offs and control policies for delay-sensitive applications in volatile environments

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 137-142).With the explosion of consumer demand, media streaming will soon be the dominant type of Internet traffic. Since such applications are intrinsically delay-sensitive, the conventional network control policies and coding algorithms may not be appropriate tools for data dissemination over networks. The major issue with design and analysis of delay-sensitive applications is the notion of delay, which significantly varies across different applications and time scales. We present a framework for studying the problem of media streaming in an unreliable environment. The focus of this work is on end-user experience for such applications. First, we take an analytical approach to study fundamental rate-delay-reliability trade-offs in the context of media streaming for a single receiver system. We consider the probability of interruption in media playback (buffer underflow) as well as the number of initially buffered packets (initial waiting time) as the Quality of user Experience (QoE) metrics. We characterize the optimal trade-off between these metrics as a function of system parameters such as the packet arrival rate and the file size, for different channel models. For a memoryless channel, we model the receiver's queue dynamics as an M/D/1 queue. Then, we show that for arrival rates slightly larger than the play rate, the minimum initial buffering required to achieve certain level of interruption probability remains bounded as the file size grows. For the case where the arrival rate and the play rate match, the minimum initial buffer size should scale as the square root of the file size. We also study media streaming over channels with memory, modeled using Markovian arrival processes. We characterize the optimal trade-off curves for the infinite file size case, in such Markovian environments. Second, we generalize the results to the case of multiple servers or peers streaming to a single receiver. Random linear network coding allows us to simplify the packet selection strategies and alleviate issues such as duplicate packet reception. We show that the multi-server streaming problem over a memoryless channel can be transformed into a single-server streaming problem, for which we have characterized QoE trade-offs. Third, we study the design of media streaming applications in the presence of multiple heterogeneous wireless access methods with different access costs. Our objective is to analytically characterize the trade-off between usage cost and QoE metrics. We model each access network as a server that provides packets to the user according to a Poisson process with a certain rate and cost. User must make a decision on how many packets to buffer before playback, and which networks to access during the playback. We design, analyze and compare several control policies. In particular, we show that a simple Markov policy with a threshold structure performs the best. We formulate the problem of finding the optimal control policy as a Markov Decision Process (MDP) with a probabilistic constraint. We present the Hamilton-Jacobi-Bellman (HJB) equation for this problem by expanding the state space, and exploit it as a verification method for optimality of the proposed control policy. We use the tools and techniques developed for media streaming applications in the context of power supply networks. We study the value of storage in securing reliability of a system with uncertain supply and demand, and supply friction. We assume storage, when available, can be used to compensate, fully or partially, for the surge in demand or loss of supply. We formulate the problem of optimal utilization of storage with the objective of maximizing system reliability as minimization of the expected discounted cost of blackouts over an infinite horizon. We show that when the stage cost is linear in the size of the blackout, the optimal policy is myopic in the sense that all shocks are compensated by storage up to the available level of storage. However, when the stage cost is strictly convex, it may be optimal to curtail some of the demand and allow a small current blackout in the interest of maintaining a higher level of reserve to avoid a large blackout in the future. Finally, we examine the value of storage capacity in improving system's reliability, as well as the effects of the associated optimal policies under different stage costs on the probability distribution of blackouts.by Ali ParandehGheibi.Ph.D
    corecore