2,297,181 research outputs found

    Relearning Professionalism: From High School Teacher to University Professor

    Full text link
    In this narrative response to stories from the field, the author chronicles her transition from high school teacher to university professor. The transition was marked by a dissonance about what it means to be a professional in each setting. The author shares several lessons learned about the autonomy in higher education, which was at first daunting, and later a relief in her new environment

    Two models in the world of Métis fiddling : John Arcand and Andy DeJarlis

    Get PDF
    Publisher PD

    Tensors, !-graphs, and non-commutative quantum structures

    Full text link
    Categorical quantum mechanics (CQM) and the theory of quantum groups rely heavily on the use of structures that have both an algebraic and co-algebraic component, making them well-suited for manipulation using diagrammatic techniques. Diagrams allow us to easily form complex compositions of (co)algebraic structures, and prove their equality via graph rewriting. One of the biggest challenges in going beyond simple rewriting-based proofs is designing a graphical language that is expressive enough to prove interesting properties (e.g. normal form results) about not just single diagrams, but entire families of diagrams. One candidate is the language of !-graphs, which consist of graphs with certain subgraphs marked with boxes (called !-boxes) that can be repeated any number of times. New !-graph equations can then be proved using a powerful technique called !-box induction. However, previously this technique only applied to commutative (or cocommutative) algebraic structures, severely limiting its applications in some parts of CQM and (especially) quantum groups. In this paper, we fix this shortcoming by offering a new semantics for non-commutative !-graphs using an enriched version of Penrose's abstract tensor notation.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Morals and the Medical Scientist

    Get PDF

    Growth of generating sets for direct powers of classical algebraic structures

    Get PDF
    For an algebraic structure A denote by d(A) the smallest size of a generating set for A, and let d(A)=(d(A),d(A2),d(A3),…), where An denotes a direct power of A. In this paper we investigate the asymptotic behaviour of the sequence d(A) when A is one of the classical structures—a group, ring, module, algebra or Lie algebra. We show that if A is finite then d(A) grows either linearly or logarithmically. In the infinite case constant growth becomes another possibility; in particular, if A is an infinite simple structure belonging to one of the above classes then d(A) is eventually constant. Where appropriate we frame our exposition within the general theory of congruence permutable varieties.Publisher PDFPeer reviewe

    Quick Question

    Get PDF
    Poetry by Matt Del Busto. Winner in the 2018 Manuscripts Poetry Contest
    corecore