164,942 research outputs found
The Astropy Problem
The Astropy Project (http://astropy.org) is, in its own words, "a community
effort to develop a single core package for Astronomy in Python and foster
interoperability between Python astronomy packages." For five years this
project has been managed, written, and operated as a grassroots,
self-organized, almost entirely volunteer effort while the software is used by
the majority of the astronomical community. Despite this, the project has
always been and remains to this day effectively unfunded. Further, contributors
receive little or no formal recognition for creating and supporting what is now
critical software. This paper explores the problem in detail, outlines possible
solutions to correct this, and presents a few suggestions on how to address the
sustainability of general purpose astronomical software
TheanoLM - An Extensible Toolkit for Neural Network Language Modeling
We present a new tool for training neural network language models (NNLMs),
scoring sentences, and generating text. The tool has been written using Python
library Theano, which allows researcher to easily extend it and tune any aspect
of the training process. Regardless of the flexibility, Theano is able to
generate extremely fast native code that can utilize a GPU or multiple CPU
cores in order to parallelize the heavy numerical computations. The tool has
been evaluated in difficult Finnish and English conversational speech
recognition tasks, and significant improvement was obtained over our best
back-off n-gram models. The results that we obtained in the Finnish task were
compared to those from existing RNNLM and RWTHLM toolkits, and found to be as
good or better, while training times were an order of magnitude shorter
XLIndy: interactive recognition and information extraction in spreadsheets
Over the years, spreadsheets have established their presence in many domains, including business, government, and science. However, challenges arise due to spreadsheets being partially-structured and carrying implicit (visual and textual) information. This translates into a bottleneck, when it comes to automatic analysis and extraction of information. Therefore, we present XLIndy, a Microsoft Excel add-in with a machine learning back-end, written in Python. It showcases our novel methods for layout inference and table recognition in spreadsheets. For a selected task and method, users can visually inspect the results, change configurations, and compare different runs. This enables iterative fine-tuning. Additionally, users can manually revise the predicted layout and tables, and subsequently save them as annotations. The latter is used to measure performance and (re-)train classifiers. Finally, data in the recognized tables can be extracted for further processing. XLIndy supports several standard formats, such as CSV and JSON.Peer ReviewedPostprint (author's final draft
A NWB-based dataset and processing pipeline of human single-neuron activity during a declarative memory task
A challenge for data sharing in systems neuroscience is the multitude of different data formats used. Neurodata Without Borders: Neurophysiology 2.0 (NWB:N) has emerged as a standardized data format for the storage of cellular-level data together with meta-data, stimulus information, and behavior. A key next step to facilitate NWB:N adoption is to provide easy to use processing pipelines to import/export data from/to NWB:N. Here, we present a NWB-formatted dataset of 1863 single neurons recorded from the medial temporal lobes of 59 human subjects undergoing intracranial monitoring while they performed a recognition memory task. We provide code to analyze and export/import stimuli, behavior, and electrophysiological recordings to/from NWB in both MATLAB and Python. The data files are NWB:N compliant, which affords interoperability between programming languages and operating systems. This combined data and code release is a case study for how to utilize NWB:N for human single-neuron recordings and enables easy re-use of this hard-to-obtain data for both teaching and research on the mechanisms of human memory
Speech Processing in Computer Vision Applications
Deep learning has been recently proven to be a viable asset in determining features in the field of Speech Analysis. Deep learning methods like Convolutional Neural Networks facilitate the expansion of specific feature information in waveforms, allowing networks to create more feature dense representations of data. Our work attempts to address the problem of re-creating a face given a speaker\u27s voice and speaker identification using deep learning methods. In this work, we first review the fundamental background in speech processing and its related applications. Then we introduce novel deep learning-based methods to speech feature analysis. Finally, we will present our deep learning approaches to speaker identification and speech to face synthesis. The presented method can convert a speaker audio sample to an image of their predicted face. This framework is composed of several chained together networks, each with an essential step in the conversion process. These include Audio embedding, encoding, and face generation networks, respectively. Our experiments show that certain features can map to the face and that with a speaker\u27s voice, DNNs can create their face and that a GUI could be used in conjunction to display a speaker recognition network\u27s data
- …
