15,778 research outputs found
The second phase transition in the pyrochlore oxide Cd2Re2O7
Evidence for another phase transition at 120 K in the metallic pyrochlore
oxide Cd2Re2O7, following the structural transition at 200 K and followed by
the superconducting transition at 1.0 K, is given through resistivity,
magnetoresistance, specific heat, and X-ray diffraction measurements. The
results indicate unique successive structural and electronic transitions
occurring in the pyrochlore compound, revealing an interesting interplay
between the crystal and electronic structures on the itinerant electron system
in the pyrochlore lattice
New beta-Pyrochlore Oxide Superconductor CsOs2O6
The discovery of a new beta-pyrochlore oxide superconductor CsOs2O6 with Tc =
3.3 K is reported. It is the third superconductor in the family of
beta-pyrochlore oxides, following KOs2O6 with Tc = 9.6 K and RbOs2O6 with Tc =
6.3 K. The Tc of this series decreases with increasing the ionic radius of
alkaline metal ions, imposing negative chemical pressure upon the Os pyrochlore
lattice.Comment: submitted to J. Phys. Soc Jp
Enhanced magnetocaloric effect in frustrated magnets
The magnetothermodynamics of strongly frustrated classical Heisenberg
antiferromagnets on kagome, garnet, and pyrochlore lattices is examined. The
field induced adiabatic temperature change (dT/dH)_S is significantly larger
for such systems compared to ordinary non-frustrated magnets and also exceeds
the cooling rate of an ideal paramagnet in a wide range of fields. An
enhancement of the magnetocaloric effect is related to presence of a
macroscopic number of soft modes in frustrated magnets below the saturation
field. Theoretical predictions are confirmed with extensive Monte Carlo
simulations.Comment: 7 page
Theory of Multifarious Quantum Phases and Large Anomalous Hall effect in Pyrochlore Iridate Thin Films
We theoretically investigate emergent quantum phases in the thin film
geometries of the pyrochore iridates, where a number of exotic quantum ground
states are proposed to occur in bulk materials as a result of the interplay
between electron correlation and strong spin-orbit coupling. The fate of these
bulk phases as well as novel quantum states that may arise only in the thin
film platforms, are studied via a theoretical model that allows layer-dependent
magnetic structures. It is found that the magnetic order develop in
inhomogeneous fashions in the thin film geometries. This leads to a variety of
magnetic metal phases with modulated magnetic ordering patterns across
different layers. Both the bulk and boundary electronic states in these phases
conspire to promote unusual electronic properties. In particular, such phases
are akin to the Weyl semimetal phase in the bulk system and they would exhibit
an unusually large anomalous Hall effect.Comment: 11 pages, 8 figures. References and acknowledgements update
Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalate
Potassium tantalate powders were hydrothermally synthesized at 100 to 200 °C in 4 to 15 M aqueous KOH solutions. A defect pyrochlore, Kta_(2)O_(5)(OH). nH2O (n ≈ 1.4), was obtained at 4 M KOH, but at 7–12 M KOH, this pyrochlore was gradually replaced by a defect perovskite as the stable phase. At 15 M KOH, there was no intermediate pyrochlore, only a defect perovskite, K_(0.85)Ta_(0.92)O_(2.43)(OH)_(0.57) 0.15H_(2)O. Synthesis at higher KOH concentrations led to greater incorporation of protons in the perovskite structures. The potassium vacancies required for charge compensation of incorporated protons could accommodate water molecules in the perovskite structure
- …
